COURSE POLICIES

• Attendance
 • Up to four excused absences
 • Two with notes from parent/guardian
 • shpattendance@columbia.edu
 • Valid excuses:
 • Illness, family emergency, tests or athletic/academic competitions, mass transit breakdowns
 • Invalid excuses:
 • Sleeping in, missing the train…
 • I will take attendance during class

• No cell phones

• Ask questions!
LECTURE MATERIALS

- https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram
- Questions: cristovao.vilela@stonybrook.edu
LAST WEEK...
QUANTUM MECHANICS

PARTICLES AND WAVES
WHAT IS QUANTUM MECHANICS?

• Quantum mechanics is the study of nature at very small scales — specifically when the energies and momenta of the system are of the order of Planck’s constant:

$$\hbar = \frac{\hbar}{2\pi} = 6.6 \times 10^{-16} \text{ eV s}$$

• On a quantum level, particles exhibit a number of non-classical behaviors:
 1. Quantization of energy, momentum, charge, spin, …
 2. Particles exhibit wave-like effects: interference, diffraction, …
 3. Systems can exist in a superposition of states
THE DE BROGLIE HYPOTHESIS

• de Broglie’s suggestion was a bold statement about the symmetry of Nature.

• Proposal: the wave aspects of matter are related to its particle aspects in quantitatively the same way that the wave and particle aspects of light are related.

• Hypothesis: for matter and radiation, the total energy \(E \) of a particle is related to the frequency \(f \) of the wave associated with its motion by:

\[
E = hf
\]

• If \(E = pc \) (recall SR), then the momentum \(p \) of the particle is related to the wavelength \(\lambda \) of the associated wave by the equation:

\[
p = \frac{h}{\lambda}
\]
THE DE BROGLIE HYPOTHESIS

- It holds even for massive particles.
- It predicts the de Broglie wavelength of a matter wave associated with a particle of momentum p.

de Broglie relation

$$\lambda = \frac{h}{p}, \quad p = \frac{h}{\lambda}$$

de Broglie hypothesis: particles are also associated with waves, which are extended disturbances in space and time.
ELECTRON DIFFRACTION

• Scattering electrons off crystals also creates a diffraction pattern!
• Electron diffraction is only possible if electrons are waves.
• Hence, electrons (matter particles) can also behave as waves.

Diffraction pattern created by scattering electrons off a crystal. (This is a negative image, so the dark spots are actually regions of constructive interference.) Electron diffraction is only possible if electrons are waves.
OBSERVATION OF ELECTRON DIFFRACTION

• Electron diffraction was first observed in a famous 1927 experiment by Davisson and Germer.

• They fired 54 eV electrons at a nickel target and observed diffraction peaks consistent with de Broglie’s hypothesis.
UNDERSTANDING MATTER WAVES

• Let’s think a little more about de Broglie waves.

• In classical physics, energy is transported either by waves or by particles.
 • Particle: a definite, localized bundle of energy and momentum, like a bullet that transfers energy from gun to target.
 • Wave: a periodic disturbance spread over space and time, like water waves carrying energy on the surface of the ocean.

• In quantum mechanics, the same entity can be described by both a wave and a particle model:
 • Electrons scatter like localized particles, but they can also diffract like extended waves.
QUANTUM WAVES SUMMARIZED

• An elementary particle like a photon can act like a particle (Compton effect, photoelectric effect) or a wave (diffraction), depending on the type of experiment / observation.

• If it’s acting like a particle, the photon can be described by its position and momentum x and p. If it’s acting like a wave, we must describe the photon with a wave function $\psi(x,t)$.

• Two waves can always be superimposed to form a third:
 • $\psi = \psi_1 + \psi_2$.
 • This is what gives rise to interference effects like diffraction.

• The wave function for a moving particle (a traveling wave) has a simple sinusoidal form.
 • But how do we interpret $\psi(x,t)$ physically?
INTERPRETATION OF THE WAVE FUNCTION

• We have seen that a particle can be described by a wave function $\psi(x,t)$.

• For any wave, we define the wave’s intensity I to be:

$$I = |\psi(x,t)|^2 = \int \psi(x,t)\psi(x,t)^* \, dx$$

where the asterisk signifies complex conjugation. Note that for a plane wave this is the square of A (a constant):

$$I = |\psi(x,t)|^2 = |A|^2$$

• Let’s use the concept of intensity and a simple thought experiment to get some intuition about the physical meaning of the de Broglie wave function.
THE DOUBLE SLIT EXPERIMENT

• **Experiment**: a device sprays an electron beam at a wall with **two small holes** in it. The size of the holes is close to the electrons’ wavelength λ_{dB}.

• Behind the wall is a screen with an **electron detector**.

• As electrons reach the screen, the detector counts up **how many electrons** strike each point on the wall.

• Using the data, we plot the **intensity** $I(x)$: the number of electrons arriving per second at position x.

![Diagram of the double slit experiment](image)
THE DOUBLE SLIT EXPERIMENT

• The classical result:

• If electrons were classical particles, we would expect the intensity in front of each slit to look like a bell curve, peaked directly in front of each slit opening.

• When both slits are open, the total intensity I_{1+2} on the screen should just be the sum of the intensities I_1 and I_2 when only one or the other slit is open.
THE DOUBLE SLIT EXPERIMENT

• In reality:

When we perform the real experiment, a **strange** thing happens.

When only one slit is open, we get the **expected** intensity distributions.

But when both slits are open, a wave-like **diffraction** pattern appears.

Apparently, the **electrons** are acting like **waves** in this experiment.
In terms of waves, the wave function of an electron at the screen when only slit 1 is open is ψ_1, and when only slit 2 is open it's ψ_2.

Hence, the intensity when only one slit is open is either $I_1 = |\psi_1|^2$ or $I_2 = |\psi_2|^2$.

With both slits open, the intensity at the screen is $I_{1+2} = |\psi_1 + \psi_2|^2$, not just $I_1 + I_2$!

When we add the wave functions, we get constructive and destructive interference; this is what creates the diffraction pattern.
WAVE FUNCTION AND PROBABILITY

• If electrons create a diffraction pattern, they must be waves. But when they hit the screen, they are detected as particles.
 • How do we interpret this?
• Max Born: Intensity $I(x) = |\psi(x,t)|^2$ actually refers to probability a given electron hits the screen at position x.
• In quantum mechanics, we don’t specify the exact location of an electron at a given time, but instead state by $I(x) = |\psi(x,t)|^2$ the probability of finding a particle at a certain location at a given time.

The probabilistic interpretation gives physical meaning to $\psi(x,t)$: it is the “probability amplitude” of finding a particle at x at time t. Diffraction pattern from an actual electron double slit experiment. Notice how the interference pattern builds particle by particle.
IS THERE A CONTRADICTION?

• We now understand the wave function in terms of the probability of a particle being someplace at some time.
 • However, there is another problem to think about.

• Since the electrons diffract, they are waves; but when they hit the screen, they interact like particles. And if they are particles, then shouldn't they only go through one slit at a time?

• If this is the case, how can an electron’s wave undergo double slit interference when the electron only goes through one slit?
 • Seems impossible…

• To test what’s going on, suppose we slow down the electron gun so that only one electron at a time hits the wall.

• We then insert a device over each slit that tells us if the electron definitely went through one slit or the other.
DESTROYING THE INTERFERENCE PATTERN

- We add electron detectors that shine light across each slit.

- When an electron passes through one of the slits, it breaks the beam, allowing us to see whether it traveled through slit 1 or slit 2 on its way to the backstop.

- Result: if we try to detect the electrons at one of the two slits in this way, the interference pattern is destroyed! In fact, the pattern now looks like the one expected for classical particles.
COMPLEMENTARITY

• Why did the interference pattern disappear?

• Apparently, when we used the light beam to localize the electron at one slit, we destroyed something in the wave function $\psi(x,t)$, that contributes to interference.

• Principle of Complementarity (N. Bohr): if a measurement proves the wave character of radiation or matter, it is impossible to prove the particle character in the same measurement, and vice-versa.

• The link between the wave and particle models is provided by the probability interpretation of $\psi(x,t)$, in which an entity’s wave gives the probability of finding its particle at some position.
THE UNCERTAINTY PRINCIPLE

• There seems to be some fundamental constraint on quantum mechanics that prevents matter from acting wave-like and particle-like simultaneously.

• Moreover, it appears that our measurements can directly affect whether we observe particle or wave-like behavior.

• These effects are encapsulated in the Uncertainty Principle.

• Heisenberg: quantum observations are fundamentally limited in accuracy.
THE UNCERTAINTY PRINCIPLE

• According to classical physics, we can (at the same instant) measure the position x and momentum p_x of a particle to infinite accuracy if we like. We’re only limited by our equipment.

• However, Heisenberg’s uncertainty principle states that experiment cannot simultaneously determine the exact values of x and p_x. know

• Quantitatively, the principle states that if we a particle’s momentum p_x to an accuracy Δp_x, and its position x to within some Δx, the precision of our measurement is inherently limited such that:

$$\Delta p_x \Delta x \geq \frac{\hbar}{2}$$
USING THE UNCERTAINTY PRINCIPLE

• Does the Uncertainty Principle mean that we can’t measure position or momentum to arbitrary accuracy?

• No. The restriction is not on the accuracy to which \(x \) and \(p_x \) can be measured, but rather on the product \(\Delta p_x \Delta x \) in a simultaneous measurement of both.

• The Uncertainty Principle implies that the more accurately we know one variable, the less we know the other. If we could measure a particle’s \(p_x \) to infinite precision, so that \(\Delta p_x = 0 \), then the uncertainty principle states:

\[
\Delta x \geq \frac{\hbar / 2}{\Delta p_x}
\]

\(\Delta p_x \to 0 \), \(\Delta x \to \infty \)

• In other words, after our measurement of the particle’s direction (momentum), we lose all information about its position!
THE UNCERTAINTY PRINCIPLE

• The Uncertainty Principle has a second part related to measurements of energy E and the time t needed for the measurements. It states that:

$$\Delta E \Delta t \geq \frac{\hbar}{2}$$

• Example: estimate the mass of virtual particles confined to the nucleus (see Lecture 2 on estimating Yukawa’s meson mass).

• Example: Δt could be the time during which a photon of energy spread ΔE is emitted from an atom.

• This effect causes spectral lines in excited atoms to have a finite uncertainty $\Delta \lambda$ (“natural width”) in their wavelengths.

Atomic spectral lines, the result of transitions that take a finite time, are not thin “delta function” spikes, but actually have a natural width due to the Uncertainty Principle.
Now that we know the Uncertainty Principle, we can understand why we can’t “beat” the double slit experiment and simultaneously observe wave and particle behavior.

Our electron detector Compton scatters light off of incoming electrons.

When an electron uses one of the slits, we observe the scattered photon and know that an electron went through that slit.

Unfortunately, when this happens, the photon transfers some of its momentum to the electron, creating uncertainty in the electron’s momentum.
UNCERTAINTY AND THE DOUBLE SLIT

• If we want to know the slit used, the photon’s wavelength must be smaller than the spacing between the two slits.

• Hence, the photon has to have a large momentum (remember, $\lambda = h/p$).

• As a result, a lot of momentum gets transferred to the electron - enough to effectively destroy the diffraction pattern.

If the wavelength of the scattering photon is small enough to pinpoint the electron at one of the slits, the resulting momentum transfer is large enough to “push” the electron out of the interference minima and maxima. The diffraction pattern is destroyed.
UNCERTAINTY AND THE DOUBLE SLIT

• If we try to pinpoint the electron at one of the slits, its momentum uncertainty gets so big that the interference pattern vanishes.

• Can you think of a way to get around this problem?

• We could use lower energy photons; but that dropping of the photon momentum simultaneously increases the photon wavelength…

• It turns out, that just when the photon momentum gets low enough that electron diffraction reappears, the photon wavelength becomes larger than the separation between the two slits (see Feynman Lectures on Physics, Vol. 3).

• This means we can no longer tell which slit the electron went through!
WHY THE UNCERTAINTY PRINCIPLE

• Let’s review what we have said so far about matter waves and quantum mechanics.

• Elementary particles have associated wave functions $\psi(x,t)$. The intensity of the wave, $I(x) = |\psi(x,t)|^2$, gives the probability of finding the particle at position x at time t.

• However, quantum mechanics places a firm constraint on the simultaneous measurements we can make of a particle’s position and momentum: $\Delta p x \Delta x \geq \hbar / 2$.

• This last concept, the Uncertainty Principle, probably seems very mysterious. However, it turns out that it is just a natural consequence of the wave nature of matter, for all waves obey an Uncertainty Principle!
WAVE FUNCTIONS SHOULD BE FINITE

• If a wavefunction is infinite in extent, like $\psi = A \sin{2\pi(x/\lambda - vt)}$, the probability interpretation suggests that the particle could be anywhere: $\Delta x = \infty$.

• If we want particles to be localized to some smaller Δx, we need one whose amplitude varies with x and t, so that it vanishes for most values of x. But how do we create a function like this?

Left: a wave function with constant amplitude means that its corresponding particle is equally likely to be at any value of x.
Right: a finite wave function, or "wave packet," corresponds to a localized particle with $\Delta x \neq \infty$.
BUILDING WAVE PACKETS

• In order to get localized particles, their corresponding wave functions need to go to zero as $x \to \pm \infty$. Such a wave function is called a wave packet.

• It turns out to be rather easy to generate wave packets: all we have to do is superimpose, or add up, several sinusoids of different wavelengths or frequencies.

• Recall the Principle of Superposition: any wave ψ can be built up by adding two or more other waves.

• If we pick the right combination of sinusoids, they will cancel at every x other than some finite interval (Fourier Theorem).
SUPERPOSITION EXAMPLE: BEATS

• You may already know that adding two sine waves of slightly different wavelengths causes the phenomenon of beats (see below).

• A typical example: using a tuning fork to tune a piano string. If you hear beats when you strike the string and the tuning fork simultaneously, you know that the string is slightly out of tune.

The sum of two sine waves of slightly different wavelengths results in beats. The beat frequency is related to the difference between the wavelengths. This is a demonstration of how adding two sinusoids creates a wave of varying amplitude.
THE CONTINUUM LIMIT

• So, evaluating a sum of sinusoids like:

\[
\psi = \sum_k A_k \cos (kx)
\]

where \(k \) is an integer that runs between \(k_1 \) and \(k_2 \), we can reproduce any periodic function.

• If we let \(k \) run over all values between \(k_1 \) and \(k_2 \) – that is, we make it a continuous variable – then we can finally reproduce a finite wave packet.

By summing over all values of \(k \) in an interval \(\Delta k = k_1 - k_2 \), we are essentially evaluating the integral

\[
\psi = \int_{k_1}^{k_2} dk A(k) \cos (kx)
\]

In such a “continuous sum”, the component sinusoids are all in phase near \(x=0 \). Away from this point, in either direction, the components begin to get out of phase with each other. If we go far enough out, the phases of the infinite number of components become totally random, and cancel out phases of component sinusoids completely.
CONNECTION TO UNCERTAINTY

• So, we can sum up sinusoids to get wave packets.
 • What does this actually mean?

• Intuition: we want a wave function that is non-zero only over some finite interval Δx.

• To build such a function, we start adding sinusoids whose inverse wavelengths, $k=2\pi/\lambda$, take on values in some finite interval Δk.

• Here’s the point: as we make the interval Δk bigger, the width of the wave packet Δx gets smaller. This sounds like the Uncertainty Principle!
WAVE-RELATED UNCERTAINTIES

• As we sum over sinusoids, making the range of k values \(\Delta k \) larger, we decrease the width of the resulting function.

• In fact, there is a fundamental limit here that looks just like the position-momentum uncertainty relation.

• For any wave, the minimum width \(\Delta x \) of a wave packet composed from sinusoids with range \(\Delta k \) is \(\Delta x = 1/(2\Delta k) \), or:

\[
\Delta x \Delta k \geq \frac{1}{2}
\]

• There is a similar relation between time and frequency:

\[
\Delta t \Delta \omega \geq \frac{1}{2}
\]
CONNECTION TO QUANTUM MECHANICS

• If \(k = \frac{2\pi}{\lambda} \), and \(\lambda = \frac{\hbar}{p} \), then the uncertainty relation for waves in general tells us:

\[
\Delta x \Delta k \geq \frac{1}{2} \quad \Rightarrow \quad \Delta x \frac{2\pi}{\Delta \lambda} \geq \frac{1}{2} \quad \Rightarrow \quad \Delta x \frac{2\pi \Delta p}{\hbar} \geq \frac{1}{2}
\]

\[
\Delta x \Delta p \geq \frac{\hbar}{2}
\]

• We recover the Heisenberg uncertainty relation!

• By a similar argument, we can show that the frequency-time uncertainty relation for waves implies the energy-time uncertainty of quantum mechanics.

• Hence, there is nothing really mysterious about the Uncertainty Principle; if you know anything about waves, you see that it arises rather naturally.
SUMMARY

• Quantum mechanics is the physics of small objects.
 • Its typical energy scale is given by Planck’s constant.

• In quantum mechanics, variables like position, momentum, energy, etc. tend to take on discrete values (often proportional to h).

• Matter and radiation can have both particle and wave-like properties, depending on the type of observation.

• But by the Uncertainty Principle, objects can never be wavelike or particle-like simultaneously.

• Moreover, it is the act of observation that determines whether matter behaves like a wave or a particle.
SCHEDULE

1. Introduction
2. History of Particle Physics
3. Special Relativity
4. Quantum Mechanics
5. Experimental Methods
6. The Standard Model - Overview
7. The Standard Model - Limitations
8. Neutrino Theory
9. Neutrino Experiment
10. LHC and Experiments
11. The Higgs Boson and Beyond
12. Particle Cosmology
EXPERIMENTAL METHODS IN PARTICLE PHYSICS

HOW WE STUDY PARTICLES IN THE LAB
TODAY’S AGENDA

• Review of particle properties

• Passage of particles through matter
 • Ionization
 • Scintillation
 • Cherenkov radiation

• Particle detectors

• Modern detectors
HOW DO WE TELL THEM APART?
STANDARD MODEL PARTICLE PROPERTIES

QUARKS
- u (up) - mass ≈ 2.3 MeV/c², charge 2/3, spin 1/2
- c (charm) - mass ≈ 1.275 GeV/c², charge 2/3, spin 1/2
- t (top) - mass ≈ 173.07 GeV/c², charge 0, spin 1/2
- d (down) - mass ≈ 4.8 MeV/c², charge -1/3, spin 1/2
- s (strange) - mass ≈ 95 MeV/c², charge -1/3, spin 1/2
- b (bottom) - mass ≈ 4.18 GeV/c², charge 0, spin 1/2
- γ (photon) - mass 0, charge 1, spin 1
- H (Higgs boson) - mass ≈ 126 GeV/c²

LEPTONS
- e (electron) - mass 0.511 MeV/c², charge -1, spin 1/2
- μ (muon) - mass 105.7 MeV/c², charge -1, spin 1/2
- τ (tau) - mass 1.777 GeV/c², charge -1, spin 1/2
- ν_e (electron neutrino) - mass <2.2 eV/c², charge 0, spin 1/2
- ν_μ (muon neutrino) - mass <0.17 MeV/c², charge 0, spin 1/2
- ν_τ (tau neutrino) - mass <15.5 MeV/c², charge 0, spin 1/2
- W (W boson) - mass 80.4 GeV/c², ±1 charge, spin 1

GAUGE BOSONS
- Z (Z boson) - mass 91.2 GeV/c², 0 charge, spin 1
PARTICLE PROPERTIES

• The charge, mass and interactions that a particle experiences (weak, electromagnetic, strong) are unique to that particle type.

• Particle detectors exploit unique particle properties to detect and identify a particle.
HOW DO WE DETECT PARTICLES?

• Principles of a measurement:
 • The particle must interact with some detector material.
 • An effect of the interaction must be measured.
 • The detector material may change.
 • The particle may also be affected:
 • Energy loss, scattering, absorption
PARTICLE INTERACTIONS WITH MATTER
PASSAGE OF PARTICLES THROUGH MATTER

• By the 1890’s, new, unstable elements (radioactivity) were being investigated by M. Curie, P. Curie, H. Becquerel, E. Rutherford, et al.

• Radioactivity: describes the emission of particles from atomic nuclei as a result of nuclear instability.

• The fact that atoms seemed to spontaneously split apart also suggests they are not fundamental particles.
At the time, it was known that unstable elements tended to emit three types of particles, which were differentiated by their electric charge.

<table>
<thead>
<tr>
<th>Electric charge</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha (α)</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td>4 x Mp</td>
</tr>
<tr>
<td>Beta (β)</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>1/1800 x Mp</td>
</tr>
<tr>
<td>Gamma (γ)</td>
<td>Neutral</td>
</tr>
</tbody>
</table>
PASSAGE OF PARTICLES THROUGH MATTER

• Alpha, beta, gamma radiation:
 • Classified according to how they bend in a magnetic field.
 • Also differentiated by how easily they can be stopped.

Why do different particles have different penetrating power?
PASSAGE OF PARTICLES THROUGH MATTER

• Alpha, beta, gamma radiation:
 • Classified according to how they bend in a magnetic field.
 • Also differentiated by how easily they can be stopped.

Charged particles interact more frequently. They ionize matter (directly) and lose energy in the process.

Neutral particles interact less often, losing less energy. They ionize matter indirectly.
PARTICLE DETECTION

- Different particles undergo different interactions, leading to different detector signatures
- Exploit this to identify particle types

<table>
<thead>
<tr>
<th>Particles</th>
<th>Type of interaction</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutrinos</td>
<td>weak (very rarely)</td>
<td>missing energy, interaction products</td>
</tr>
<tr>
<td>electrons</td>
<td>electromagnetic</td>
<td>track and electromagnetic shower</td>
</tr>
<tr>
<td>muons</td>
<td>electromagnetic</td>
<td>penetrating track</td>
</tr>
<tr>
<td>p, K, π</td>
<td>electromagnetic, strong, weak</td>
<td>track and hadron shower</td>
</tr>
<tr>
<td>photons</td>
<td>electromagnetic</td>
<td>electromagnetic shower</td>
</tr>
<tr>
<td>neutrons, K^0</td>
<td>strong, weak</td>
<td>hadron shower</td>
</tr>
</tbody>
</table>
PARTICLE DETECTION

Photons
No ionization in low density tracker

Electrons
Ionize tracker, radiative losses lead to shower

Muons
Minimum ionizing particles, little energy loss

Charged hadrons
Fully absorbed in dense hadronic calorimeter

Neutral hadrons
No direct ionization

Non-destructive measurement

Destructive measurements
PARTICLE DETECTION

1. MEASUREMENT BY ELECTROMAGNETIC ENERGY LOSS

- Applies to all charged particles

![Diagram showing ionisation, excitation, and scintillation processes in particle detection.]

Ionisation:

Excitation and scintillation:
IONIZATION

- **Ion**: positively or negatively charged particle (or part of atom)
- Ions can be produced when enough energy is given to remove one or more electrons from an atom:

![Diagram showing ionization process](image-url)

Hydrogen atom (p+e bound state) → Ion (free proton)

(Recall)
IONIZATION

Bethe energy loss formula

\[-\frac{dE}{dx} = \frac{4\pi}{m_e c^2} \cdot \frac{n z^2}{\beta^2} \cdot \left(\frac{e^2}{4\pi \varepsilon_0}\right)^2 \left[\ln \left(\frac{2m_e c^2 \beta^2}{I \cdot (1-\beta^2)}\right) - \beta^2\right]\]

\[-\frac{dE}{dx}\] Energy loss per distance traveled

\[\beta = \frac{v}{c}\] Particle velocity

\[z\] Particle charge (in units of electron charge)

\[n\] Density of electrons in material

\[I\] Mean excitation potential of material

\[\varepsilon_0\] Vacuum permittivity

\[e\] Electron charge

\[m_e\] Electron mass

\[c\] Speed of light in vacuum

Minimum Ionizing Particles
IONIZATION

Bethe energy loss formula

\[- \frac{dE}{dx} = \frac{4\pi}{m_e c^2} \cdot \frac{n z^2}{\beta^2} \cdot \left(\frac{e^2}{4\pi \varepsilon_0} \right)^2 \left[\ln \left(\frac{2m_e c^2 \beta^2}{I \cdot (1-\beta^2)} \right) - \beta^2 \right] \]

\[- \frac{dE}{dx} \quad \text{Energy loss per distance traveled} \]

\[\beta = \frac{v}{c} \quad \text{Particle velocity} \]

\[z \quad \text{Particle charge (in units of electron charge)} \]

\[n \quad \text{Density of electrons in material} \]

\[I \quad \text{Mean excitation potential of material} \]

\[\varepsilon_0 \quad \text{Vacuum permittivity} \]

\[e \quad \text{Electron charge} \]

\[m_e \quad \text{Electron mass} \]

\[c \quad \text{Speed of light in vacuum} \]

\[p = \frac{1}{\sqrt{1-\beta^2}} m \]
SCINTILLATION

- Scintillation is the **emission of light** of a characteristic wavelength spectrum, following the **absorption of radiation**.
 - The emitted radiation is usually less energetic than that absorbed.
- Scintillation **occurs in**:
 - Some types of **organic molecules** with complicated electronic structures
 - p-Terphenyl: $C_{18}H_{14}$
 - “PPO”: $C_{15}H_{11}NO$
 - **Inorganic** crystals and gases / liquids
 - NaI, CaF$_2$
 - He, Ar, Xe
An atom is excited when it has the potential to spontaneously produce energy.

- This happens when one or more of the electrons occupy a higher-energy state.
- When the electron returns to a lower energy state, the energy difference is given off in the form of radiation.

- The lowest energy state is the ground state.

\[E = \frac{hc}{\lambda} \]
SCINTILLATION

• Depending on the particle \(dE/dx \), the fast and slow states are occupied differently.

• The relative intensities in the light output of these states depend on the ionizing particle type.

• This property of scintillators allows for pulse shape discrimination: it is possible to identify which particle was detected by looking at the scintillation light times.
SCINTILLATION

- Pulse shapes can be used to discriminate among different particle types:
CHERENKOV RADIATION

- Cherenkov effect: a charged particle moving faster than the speed of light in a medium \(v>c/n\) emits Cherenkov radiation.

As a particle passes through matter, the surrounding atoms polarize and depolarize, and a weak electromagnetic wave spreads out from the position of the particle. For a particle traveling more slowly than light, wave-fronts originating at different times can never meet, and no interference is possible.

For a particle traveling faster than light, the wave-fronts do overlap, and constructive interference is possible, leading to a significant, observable signal.
CHERENKOV RADIATION

• Cherenkov effect: a charged particle moving faster than the speed of light in a medium (v>c/n) emits Cherenkov radiation.

Duck moving slower than the speed at which water waves travel. Bullet moving faster than the speed at which air waves travel – the speed of sound.
CHERENKOV RADIATION

• Cherenkov effect: a charged particle moving faster than the speed of light in a medium ($v>c/n$) emits Cherenkov radiation.
CHERENKOV RADIATION

• A particle can not, of course, travel faster than the speed of light in vacuum.

• In a medium of refractive index n, the speed of light is c/n, and there is no reason why the speed of the particle, βc, cannot be greater than c/n.

• A highly relativistic particle passing through a medium is observed to emit visible light known as Cherenkov radiation if β > 1/n. As can be seen from the above diagram, a cone of light radiates out from each point on the particle's track.

• The Cherenkov cone angle is related to the particle’s β.

\[
\cos\theta_c = \frac{c}{\beta c t} = \frac{1}{\beta n}
\]
CHERENKOV RADIATION

• The characteristic blue glow of nuclear reactors is due to Cherenkov radiation.
LIGHT DETECTION

- A photomultiplier tube (PMT) is a commonly used instrument for detecting visible photons.
- Basic of operation: photoelectric effect
 - Single photons converted to electrons and multiplied to a measurable electronic signal.
LIGHT DETECTION

• A photomultiplier tube (PMT) is a commonly used instrument for detecting visible photons.

• Basic of operation: photoelectric effect
 • Single photons converted to electrons and multiplied to a measurable electronic signal.
LIGHT DETECTION

• A photomultiplier tube (PMT) is a commonly used instrument for detecting visible photons.

• Basic of operation: photoelectric effect
 • Single photons converted to electrons and multiplied to a measurable electronic signal.
LIGHT DETECTION

- Light falls on a photocathode and a photoelectron is emitted (photoelectric effect).
 - Quantum Efficiency depends on cathode and wavelength (QE~25%).
- Photoelectron focused and accelerated towards the first dynode by electric field.
- Photoelectron strikes dynode and several electrons are emitted (on average n~5).
- Several dynodes (~10) give high gain (10^7).
- High speed: few ns transit time!
- Gain can be much lower in magnetic fields, depending on orientation.
PHOTON INTERACTIONS IN MATTER

• Photoelectric effect ✓
• Compton scattering ✓
• Pair production (today)

• How does each process contribute to the total energy loss?
PHOTON INTERACTIONS IN MATTER

• Absorption coefficient of Al
 \[Z = 13 \]

• Absorption coefficient of Pb
 \[Z = 82 \]

Higher Z materials favour photon absorption by photoelectric effect

Probability of interaction depends on number of protons (Z)
PHOTON INTERACTIONS IN MATTER

PAIR PRODUCTION

• Dominant process at high energy, above 4 MeV for lead (material dependent).

Pair production in a bubble chamber
BREMMSSTRAHLUNG

- Bremsstrahlung: $e Z \rightarrow Z e \gamma$
 electromagnetic radiation produced by the deceleration of an electron, when deflected by an atomic nucleus.

\[
- \frac{dE}{dx} = \frac{E}{X_0}
\]

\[X_0 [cm] = \frac{716}{\rho [g/cm^3]} \frac{A}{Z (Z+1) \ln (287/\sqrt{Z})} \frac{1}{1}
\]

X_0 is the mean distance over which a high-energy electron loses all but $1/e$ of its energy.

- Pb: $X_0 = 0.56$ cm
- Si: $X_0 = 8.9$ cm
PAIR PRODUCTION AND BREMMSTRAHLUNG

- Pair production and Bremsstrahlung radiation are complementary processes: both lead to electromagnetic showers.

- Very similar Feynman diagrams
- Just two arms swapped
- At high energy: $\sigma_\gamma = \frac{7}{9}\sigma_e$
ELECTROMAGNETIC SHOWERS

• The number of particles increases as a 2^N, where N is the number of X_0 over which the shower has developed.

• X_0 is the “radiation length”.

• The length of the shower depends on the primary electron energy.

\[
\begin{array}{c|ccccc}
\times & 0 & X_0 & 2X_0 & 3X_0 & 4X_0 \\
\hline
N & 1 & 2 & 4 & 8 & 16 & 0 \\
\hline
\langle E \rangle & E_0 & E_0/2 & E_0/4 & E_0/8 & E_0/16 & \langle E_c \rangle \\
\end{array}
\]
ELECTROMAGNETIC SHOWERS

- Cloud chamber image of a shower between lead plates.
• Hadronic interactions have high multiplicity:
 • Shower is to 95% contained in \(\sim 7\lambda\) at 50 GeV (1.2 m of iron).

• Hadronic interactions produce \(\pi^0\):
 • \(\pi^0 \rightarrow \gamma\gamma\), leading to local EM showers.

• Some energy loss in nuclear breakup and neutrons ("invisible energy")

• Stronger fluctuations in a hadronic shower:
 • Worse energy resolution.
HADRONIC VS EM SHOWERS

Gamma shower

Hadronic shower
HADRONIC VS EM SHOWERS
A measure of interaction probability in particle physics.

“Effective area of collision”

Used to calculate predicted interaction rates:

\[\mathcal{N} = \Phi \times \sigma \]

- **Interaction rate**: events/second
- **Flux of incoming particles**: particles/cm²/second
- **Cross-section**: cm²
ASIDE
A NOTE ABOUT CROSS-SECTIONS

• A measure of interaction probability in particle physics.

• “Effective area of collision”

• Used to calculate predicted interaction rates:

\[N(E) = \Phi(E) \times \sigma(E) \]

- Interaction rate: events/second
- Flux of incoming particles: particles/cm²/second
- Cross-section: cm²
ASIDE
A NOTE ABOUT CROSS-SECTIONS

• Example:

\[r = 7 \text{ fermi} = 7 \times 10^{-15} \text{ m} \]
\[A = \pi r^2 = 154 \text{ fermi}^2 = 1.54 \times 10^{-28} \text{ m}^2 \]
\[A = 1.54 \text{ barns} \]
\[1 \text{ barn} = 10^{-28} \text{ m}^2 = 100 \text{ fm}^2 \]

A 6 MeV alpha particle approaching a gold nucleus with an impact parameter equal to the gold nuclear radius of 7 fm would be scattered through an angle of almost 140°. We would say that the cross section for scattering at or greater than 140° is 1.54 barns.
ASIDE
A NOTE ABOUT CROSS-SECTIONS

• Example:

• Rutherford worked out the scattering cross-section for alpha particles of kinetic energy KE scattering off a single nucleus with atomic number Z. The cross-section for scattering at a greater angle than some chosen angle is:

\[\sigma = \pi Z^2 \left(\frac{ke^2}{KE} \right)^2 \left(\frac{1 + \cos \theta}{1 - \cos \theta} \right) \]

Depends on chosen angle (geometric nature of cross-section). Increases with \(Z^2 \), the number of protons in a nucleus. Depends on \(k \), the Coulomb force constant (strength of electromagnetic interaction). Decreases with the kinetic energy squared (\(KE^2 \)) of the incoming particle.
DETECTING PARTICLES
When charged particles pass through matter, they ionize atoms in their path, liberating charges, and causing the emission of detectable light (scintillators) or the formation of tracks of droplets (cloud/bubble chambers). This is how we “see” them.

- Experimental physicists use many kinds of particle detectors, including:
 - Geiger counters
 - Cloud chambers *
 - Bubble chambers *
 - Spark chambers *
 - Photographic emulsions *
 - Wire chambers
 - Cherenkov detectors
 - Scintillators
 - Photomultiplier tubes
 - Calorimeters

Note: most are sensitive to electrically charged particles only!
PARTICLE DETECTORS

• Detectors usually specialize in:
 • Tracking: measuring positions / trajectories / momenta of charged particles, e.g.:
 • Silicon detectors
 • Drift chambers
 • Calorimetry: measuring energies of particles:
 • Electromagnetic calorimeters
 • Hadronic calorimeters

• But they can also be a combination.
PARTICLE DETECTORS

• Design Criteria:
 • Coverage and hermeticity:
 • Captures all particles produced in an interaction.
 • No holes, no cracks, no dead regions.
 • Resolution:
 • Resolve all particles (high granularity, each “granule”/channel read out individually).
 • Measure energies and directions with high precision.
 • Constraints:
 • Cost and available technology.
ENERGY RESOLUTION

• The ability to differentiate amounts of energy deposition.

• Quantitatively described by the full width at half maximum:

\[
\text{FWHM} = 2\sqrt{2\ln 2} \sigma \approx 2.35\sigma
\]

• It determines when two peaks can be separated.
ENERGY RESOLUTION

\[\frac{dN_{\mu\mu}}{dm_{\mu\mu}} \text{[GeV}^{-1}] \]

\[\int L \approx 1.5 \text{ pb}^{-1} \]

\[\omega/\rho \phi \quad J/\psi \quad \psi' \quad Y(1S) \quad Y(2S) \quad Z \]

\[\text{ATLAS Preliminary} \]

\[\text{Data 2010, } \sqrt{s} = 7 \text{ TeV} \]
CHERENKOV DETECTORS

The Cerenkov radiation from a muon produced by a muon neutrino event yields a well defined circular ring in the photomultiplier detector bank.

The Cerenkov radiation from the electron shower produced by an electron neutrino event produces multiple cones and therefore a diffuse ring in the detector array.
The threshold particle speed for Cerenkov radiation is \(v = \frac{c}{n} \), which for an electron in water gives a threshold particle kinetic energy of 0.26 MeV.

\[
\beta = 0.752, \quad E_{\text{electron}} = \gamma m_e c^2 = \frac{1}{\sqrt{1 - \beta^2}} m_e c^2 = (1.52)(0.511 \text{ MeV}) = 0.775 \text{ MeV} \]

Kinetic energy = 0.775 MeV - 0.511 MeV = 0.26 MeV
CHERENKOV DETECTORS

• Super-Kamiokande in Japan
NEUTRINO DETECTION AT SUPER-K

- Electrons and muons resulting from neutrino interactions in the water

Super-Kamiokande IV
Run 999999 Sub 0 Event 18
11-11-2101414:11
Inner: 2335 hits, 2067 ce
Outer: 3 hits, 2 pe
Trigger: 0617
θ, ϕ: 0.0 cm
B: 202.3 MeV
neu-like, p = 470.3 MeV/c

Super-Kamiokande IV
Run 999999 Sub 0 Event 99
11-11-2101416:51
Inner: 2077 hits, 5341 ce
Outer: 5 hits, 3 pe
Trigger: 0617
θ, ϕ: 021.4 cm
B: 300.3 MeV
neu-like, p = 5311 MeV/c
NEUTRINO DETECTION AT SUPER-K
Induced electrical signal on anode can be measured to estimate number of drift electrons: E lost to ionization.

- Drifting electrons should not be trapped:
 - Use noble gas, e.g. Ar.

- Want large primary ionization yield:
 - Ar gives 25 ions/cm at normal T, p for a minimum ionizing particle.

- The primary electrons may ionize further atoms:
 - $\times3$ or $\times4$ increase.

- Xe and/or higher pressure are even better (and more expensive).
IONIZATION DETECTOR

• Geiger counter
TIME PROJECTION CHAMBER

- Exploits ionization energy losses of charged particles.
- Electrons are drifted onto a fine grained plane of wires, and the particle trajectories can be mapped out, along with their ionization energy loss, dE/dx.
TIME PROJECTION CHAMBER

- MicroBooNE liquid argon TPC at Fermilab
SCINTILLATION DETECTORS

- Light output and type of particles / radiation.
SCINTILLATION DETECTORS

• Emitted light depends on detector material.
 • Usually in the visible to UV range.

• Sometimes requires the use of wavelength-shifting materials to shift UV light to visible, so it can be efficiently measured by commonly used photomultiplier tubes.
SCINTILLATION DETECTORS

Figure 8.16 A strip light guide can be used to couple the edge of a large, flat scintillator to a PM tube.
APPLICATION OF SCINTILLATION DETECTORS

• Cosmic ray muon detection
COSMIC RAY MUON DETECTION
COSMIC RAY MUON DETECTION

• Measurement of the muon lifetime

1. Measure t_{decay} (difference between muon signal and decay signal in the second scintillator paddle) of a sample N_0 of low energy muons.

2. Fit the data to an exponential curve of the form:

$$N(t) = N_0 e^{-t/T}$$

where $T = \text{muon lifetime}$
COSMIC RAY MUON DETECTION

- Measurement of the muon lifetime

Lifetime T:
- \(T = 2.29 \mu s \)
- \(T_{\text{th}} = 2.1970 \mu s \)

1. **Measure** \(t_{\text{decay}} \) (difference between muon signal and decay signal in the second scintillator paddle) of a sample \(N_0 \) of low energy muons.

2. **Fit** the data to an exponential curve of the form:
 \[
 N(t) = N_0 e^{-t/T}
 \]
 where \(T = \text{muon lifetime} \)
MODERN EXPERIMENTS
PARTICLE SOURCES

• Particle physics experiments use different sources of particles

• Artificial beams produced in accelerators
 • Colliders – beams are made to collide against each other.
 • Highest energy interactions from artificial sources
 • Beams are aimed at fixed targets / detectors
 • Lower energy, but typically more intense

• Natural sources
 • Particles resulting from cosmic ray interaction in the atmosphere
 • Radioactive sources
 • Astrophysical sources
 • Dark matter?
Particle Colliders Around the World

<table>
<thead>
<tr>
<th>Location</th>
<th>Collider</th>
<th>Years</th>
<th>Particles</th>
<th>Energy Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAC, California</td>
<td>SLC</td>
<td>1989-1998</td>
<td>$e^- e^+$</td>
<td>50 GeV e^- and 50 GeV e^+</td>
</tr>
<tr>
<td></td>
<td>PEP II</td>
<td>1997-2008</td>
<td>$e^- e^+$</td>
<td>9.0 GeV e^- and 3.1 GeV e^+</td>
</tr>
<tr>
<td>Fermilab, nr Chicago</td>
<td>Tevatron</td>
<td>1987-2009</td>
<td>$p \bar{p}$</td>
<td>980 GeV p and 980 GeV \bar{p}</td>
</tr>
<tr>
<td>CERN, Geneva</td>
<td>LEP</td>
<td>1989-2000</td>
<td>$e^- e^+$</td>
<td>E_{CM}: 89 to 206 GeV</td>
</tr>
<tr>
<td></td>
<td>LHC</td>
<td>2008-...</td>
<td>$p p$</td>
<td>E_{CM}: 14 TeV</td>
</tr>
<tr>
<td>DESY, Hamburg</td>
<td>HERA</td>
<td>1990-2007</td>
<td>$e^- p$</td>
<td>920 GeV p and 30 GeV e^-</td>
</tr>
<tr>
<td>KEK, near Toyko</td>
<td>KEKB</td>
<td>1999-...</td>
<td>$e^- e^+$</td>
<td>8.0 GeV e^- and 3.5 GeV e^+</td>
</tr>
<tr>
<td>Brookhaven National Lab, Long Island</td>
<td>RHIC</td>
<td>2000-...</td>
<td>AuAu, CuCu</td>
<td>200 GeV/nucleon</td>
</tr>
</tbody>
</table>

![Map of Particle Colliders]
CERN’s Accelerator Complex

ALICE
2008 (27 km)

LHC
2008 (27 km)

ATLAS
2011 (162 m)

HiRadMat
2011

AD
1999 (157 m)

SPS
1976 (7 km)

BOOSTER
1972 (157 m)

ISOLDE
1989

PS
1959 (628 m)

LEIR
2005 (78 m)

CMS

CMS

ATLAS

p (proton)
ion
neutrons
p (antiproton)
electron
proton/antiproton conversion

SHP Particle Physics

2/25/2017
109
PROTON-PROTON COLLISIONS
A GENERAL PURPOSE DETECTOR

beam pipe

tracking and vertexing

EM calorimeter

hadronic calorimeter

muon chambers
THE CMS DETECTOR
THE ATLAS DETECTOR

- Muon Detectors
- Tile Calorimeter
- Liquid Argon Calorimeter
- Toroid Magnets
- Solenoid Magnet
- SCT Tracker
- Pixel Detector
- TRT Tracker

25 m
44 m
THE ATLAS DETECTOR

Electron
Positron
Anti-proton
Muon
Neutron
Anti-muon
Proton
Neutrino
Photon

Pixel/SCT
detector
Transradiation
tracker
Electromagnetic
Calorimeter

Inner magnetic field 2 T
Solenoid
magnet

Magnification 3x

Energy [GeV]:
1 5 10 15 25

display instantly

Muon Spectrometer
Toroid magnets

Hadronic Calorimeter

Outer Magnetic field 0.5 T

10.569 m
4.25 m
2.28 m
1.4 m
0 m
MAGNET SYSTEMS

- Solenoid and toroidal magnets.

- Solenoid coils in CMS and ATLAS:
 - Field direction along beam axis.
 - Homogenous field inside the coil.
 - e.g. CMS superconducting magnet
 - $I = 20$ kA, $B = 4$ T
 - Temperature 4K.

- For comparison, Earth’s magnetic field at surface is ~ 50 µT.
EVENT SIGNATURES

Higgs $\rightarrow 4$ muons

Charged particles bend in the magnetic field

The lower the particle momentum the more they bend.

Straight tracks from high momentum particles are the most interesting!
A REAL EVENT
T2K: ND280
A GENERAL PURPOSE NEUTRINO DETECTOR

- Beam of neutrinos produced at the J-PARC proton accelerator in Japan

Series of images illustrating the detector setup, including segments for plastic scintillator, Pb, argon gas, FGDs, TPCs, and an electromagnetic calorimeter (ECal).
THE ND280 DETECTOR
WITH MAGNET OPEN FOR MAINTENANCE
A NEUTRINO INTERACTION IN ND280
THE LUX DARK MATTER EXPERIMENT

• The Large Underground Xenon experiment (LUX) physics experiment looks for evidence of weakly interacting massive particle (WIMP) dark matter interactions.

• It is a 370 kg liquid xenon TPC that aims to directly detect galactic dark matter in an underground laboratory 1 mile deep.

• The detector is shielded from background particles by a surrounding water tank and the earth above.

• This shielding reduces cosmic rays and radiation interacting with the xenon.
PARTICLE DETECTORS AT THE SOUTH POLE
Why do we go to such remote places for science?
ICE FISHING FOR SPACE NEUTRINOS!

- IceCube detector at the South Pole
 - A neutrino detector: a neutrino telescope.
- Looks for extra-terrestrial sources of neutrinos.
 - Like taking an “X-ray” picture of the Universe.
ICE FISHING FOR SPACE NEUTRINOS!

- Made up of strings of thousands of basketball-sized photon detectors
 - Digital Optical Modules
ICECUBE DETECTION PRINCIPLE

• How does IceCube detect neutrinos?
 • A neutrino interacts with an atomic nucleus, and produces a charged lepton (electron, muon or tau)
 • The lepton radiates Cherenkov photons that are detected by the DOMs.
 • The direction and intensity of the light is used to identify neutrino sources in the Universe.
ICECUBE DETECTION PRINCIPLE

- South pole: maps out neutrinos from the northern sky
ICECUBE PHYSICS

• Used to study extra-galactic, extremely high-energy sources.
 • Neutrinos, being nearly massless and without charge, are ideal messengers. They carry directional information.
 • Charged particles are bent by magnetic fields, neutrons decay before reaching the earth and high-energy photons are absorbed.

• E.g. gamma ray bursts: hadronic or electromagnetic origin?

• Can only be done in the South Pole!

• Vast, extremely clean ice; it’s there for free!
 • Recall, detector constraints: cost and detector technology
• In 2013, IceCube announced that it had detected 28 neutrinos likely originating from outside the Solar System.
 • These are ultra-high energy (PeV) neutrino events.
THAT’S ALL FOR THIS WEEK

• Next week:
 • An overview of the Standard Model
BONUS
SOLID-STATE DETECTORS
SOLID-STATE DETECTORS
PERTURBATION THEORY

• Use a power series in a parameter ϵ (such that $\epsilon \ll 1$) - known as perturbation series - as an approximation to the full solution.

• For example:

$$A = A_0 + \epsilon A_1 + \epsilon^2 A_2 + ...$$

• In this example, A_0 is the “leading order” solution, while A_1, A_2, … represent higher order terms.

• **Note:** if ϵ is small, the higher-order terms in the series become successively smaller.

• Approximation:

$$A \approx A_0 + \epsilon A_1$$
PERTURBATION THEORY IN QFT

- Perturbation theory allows for well-defined predictions in quantum field theories (as long as they obey certain requirements).
- Quantum Electrodynamics (QED) is one of those theories.
- Feynman diagrams correspond to the terms in the perturbation series!

\[P = A + B\alpha^2 + (C + D)\alpha^4 + \ldots \]

Diagrams define a series in \(\alpha \)
QUANTUM CHROMODYNAMICS (QCD)

• Theory of strong interactions. Recall: gluons are the force carriers.
• Confinement: why we don’t see free quarks.
• Asymptotic freedom: at very high energies, the interaction scale is smaller than at low energies, and we’re in the perturbative regime.
COLLIDER EXPERIMENTS

LHC Experiments underground
WHY BUILD THE LARGE HADRON COLLIDER?

• Large accelerator complex:
 • Long-lived charged particles can be accelerated to high momenta using electromagnetic fields.
 • The LHC accelerates protons and heavy ions; older generation accelerators collided e.g. protons - anti-protons, and electrons - positrons, …

• Why accelerate particles?
 • High beam energies \rightarrow high E_{CM} \rightarrow more energy to create new particles!
 • Higher energies probe physics at shorter distances. De Broglie wavelength:

$$\frac{\lambda}{2\pi} = \frac{\hbar c}{pc} \approx \frac{197 \text{ MeV fm}}{p \text{ [MeV/c]}}$$

 • e.g. 20 GeV/c probes a distance of 0.01 fm.

• An accelerator complex uses a variety of particle acceleration techniques to reach the final energy.
PROTON-PROTON COLLISIONS

• Quantum Chromodynamics theory is expressed in terms of quarks and gluons (partons)
 • We are colliding composite objects.

• At the LHC energies, quarks and gluons collide and the actual collision energy is a fraction of the total:

\[\sqrt{\hat{s}} \ll \sqrt{s} = E_{\text{cm}} = 2E_p \]
CERN
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

• Founded in 1954. Currently operates a network of six accelerators.

• A few of the scientific and computing achievements:
 • Neutral currents in Gargamelle bubble chamber
 • W/Z bosons in UA1 and UA2 experiments
 • The World Wide Web!