
FELIX User Manual
ATLAS FELIX Group

<<<

Table of Contents
1. Welcome to the FELIX User Manual . 1

1.1. Overview. 1

1.2. Document Compatibility . 1

2. Introduction to FELIX . 3

2.1. FELIX Variants and Functionality. 3

2.1.1. Gigabit Transceiver (GBT) and the Versatile Link . 3

2.1.2. FULL Mode . 3

2.1.3. Propagation of ATLAS TTC Information . 4

3. Hardware Requirements and Setup . 5

3.1. Recommended Hardware Platforms . 5

3.1.1. FPGA I/O Hardware: VC-709 (Commodity Platform) . 5

3.1.2. FPGA I/O Hardware: Custom Platforms. 5

3.1.3. FELIX Host Systems . 7

3.2. Installation of VC-709. 7

3.3. Installation of BNL-711 and BNL-712. 7

3.4. Connecting to an existing TTC system . 8

3.4.1. VC-709 Only: TTCfx v3 Overview and Installation . 8

3.4.2. Connecting TTC and BUSY. 9

3.5. Configuring FELIX Clock . 9

3.5.1. Clock Source Selection . 9

3.5.2. TTC Clock Recovery: ADN2814. 10

3.5.3. Clock Jitter Cleaning . 10

3.6. Connecting and Initialising Optical Links. 11

3.6.1. Physical Link Layer Status: VC-709. 11

3.6.2. Physical Link Layer Status: BNL-711/712 . 11

3.6.3. Logical Link Layer Initialisation . 12

4. Firmware Releases and Programming . 13

4.1. Firmware Distribution Protocol . 13

4.1.1. Release Announcements . 13

4.1.2. Firmware Distribution Site. 13

4.1.3. Supported Link Protocols & Encoding . 13

4.2. Firmware Programming . 13

4.2.1. JTAG Connectivity . 14

4.2.2. Setting up the Vivado™ Suite . 14

4.2.3. Programming the FPGA Directly . 17

4.2.4. Programming the FLASH ROM (VC-709) . 19

4.2.5. Programming the FLASH ROM (BNL-711/712). 22

4.2.6. Enabling new FPGA Configuration . 22

5. Software Distribution and Installation . 24

5.1. Software Distribution Protocol . 24

5.1.1. Pre-requisites . 24

5.1.2. Release Announcements . 24

5.1.3. Release Distribution Site . 24

5.2. Software Installation Instructions . 24

5.2.1. Driver RPM Installation Instructions . 24

5.2.2. Installation of FELIX Software Suite . 26

6. Basic Tools . 28

6.1. E-link Configuration with elinkconfig . 29

6.1.1. Global Panel . 31

6.1.2. To-Host Panel . 34

6.1.3. From-Host Panel . 35

6.1.4. Link and Data Generator Configuration Upload Dialog . 36

6.1.5. Guide to Valid E-link Configurations . 37

6.1.6. Guide to common configuration tasks. 39

6.2. Low Level Tools (System Status Monitoring & Control) . 41

6.2.1. flx-info . 42

6.2.2. flx-config . 43

6.2.3. flx-init . 44

6.2.4. flx-reset . 45

6.2.5. flx-monitor . 46

6.3. Dataflow from Front-end via FELIX to FELIX host PC . 47

6.3.1. fdaq. 47

6.4. Dataflow from FELIX Host PC to Front-end Systems via FELIX . 49

6.4.1. fupload. 49

6.5. FELIX Configuration Tools . 51

6.5.1. felink . 51

6.5.2. fereverse . 52

6.5.3. fgpolarity. 53

6.5.4. feconf . 54

6.5.5. femu . 55

6.5.6. feto . 55

6.5.7. fflash . 56

6.6. General Debugging Tools . 57

6.6.1. fcheck. 57

6.6.2. fedump . 58

6.6.3. fec . 59

6.7. Remote Hardware Command and Configuration Tools . 60

6.7.1. fic(e) . 60

6.7.2. fgbtxconf . 61

7. Felixcore Application and NetIO . 63

7.1. Operational Principles. 63

7.2. Configuration. 63

7.3. Monitoring . 65

7.3.1. FelixCore Native Monitoring . 65

7.3.2. Monitoring with felix-web-mon . 65

7.4. FelixCore Examples . 68

7.4.1. Tests without an FLX Card . 68

7.4.2. Tests with an FLX Card . 68

7.5. Connecting to a felixcore instance using NetIO tools. 68

7.6. Connecting to a felixcore instance using FATCAT . 69

7.7. Discovering E-links with the FELIX BUS system . 69

7.8. Debugging. 70

7.8.1. Using the FelixCore event tracing framework . 70

8. Resources for Front-End Developers. 72

8.1. FELIX Firmware Modules for Front-end Users . 72

8.1.1. Downloading Firmware Source . 72

8.1.2. GBT Test Modules . 72

8.1.3. FULL Mode Test Modules . 73

8.2. General Hints and Tips . 73

8.2.1. Known Issues with GBTx. 73

8.2.2. Known Technical Requirements for FELIX Communication . 73

8.2.3. Examples of Design Best Practice based on Current Experience . 73

8.2.4. Frequently Asked Questions . 74

Appendix A: Setting up a TTC System for use with FELIX . 76

A.1. Tuning a TTC system . 78

A.2. Guide to TTC Channel B . 81

A.2.1. B channel decoding firmware. 83

A.2.2. Channel B decoding software . 83

A.3. Useful documents. 83

Appendix B: BNL-711 Technical Information . 84

B.1. User Jumper Map and Functional Specification . 84

B.1.1. J1 . 84

B.1.2. J2 . 85

B.1.3. J8 . 85

B.1.4. JMP1. 85

B.1.5. JMP2. 85

B.1.6. JMP3. 86

B.1.7. JMPR1 & JMPR2 . 86

B.2. MiniPOD Connectivity Map . 86

Appendix C: Guide to FELIX Data Structures. 88

Appendix D: Guide to Using FELIX with GBT-SCA . 90

D.1. Introduction . 90

D.2. Typical test setup . 90

D.3. Operation to set up an SCA e-link . 91

D.4. Low level operations with fec tools to configure and establish basic communication 93

D.5. The integrated production system — Introduction . 93

D.6. The SCA software (SCA-SW), its demonstrators and the OPC-UA SCA Server 94

D.6.1. SCA-SW library . 94

D.6.2. SCA OPC-UA server. 96

D.7. SCA References . 98

References . 99

Chapter 1. Welcome to the FELIX User
Manual

1.1. Overview
This document is intended to support all users of the Phase-I FELIX readout infrastructure with
installation, maintenance and operation of their system. The document covers all aspects of the
FELIX system from recommended hardware to firmware and driver installation and maintenance.
Finally the full suite of FELIX software will be presented, including useful test tools leading up to
the primary 'FelixCore' dataflow application which is intended to form the backbone of all data
taking sessions. For more information users should consult the following locations for updates:

The FELIX users mailing list:

atlas-tdaq-felix-users@cern.ch

The FELIX Project Website:

https://atlas-project-felix.web.cern.ch/atlas-project-felix

The FELIX release distribution site:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/

User support requests from users to the FELIX team should be made via the dedicated JIRA project:

https://its.cern.ch/jira/projects/FLXUSERS


User support via SharePoint has been discontinued. Please report any broken links
of obsolete material to help improve the overall quality of our documentation.

1.2. Document Compatibility
This document is continuously evolving alongside FELIX firmware and software. The table below
will keep track of the versions of each which should be considered covered by a given version of
this manual. Note - as of Register Map 4 the version number format for this document was changed
to better align with other version numbers in the FELIX release. As such, the last version which is
compatible with RM3 is 0.8x (i.e. in the old numbering).

Manual Version GBT F/W Revision FULL Mode F/W
Revision

LTDB Mode F/W
Revision

Software Release

4.0.5+ rm-4.4.1 rm-4.4.1 rm-4.4.1 4.0.5

0.8x 5317+ 5327/5168 N/A 3.9.1

0.7 5317+ 5327/5168 N/A 3.8.1

0.61 5317 5327 N/A 3.8

mailto:atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/
https://its.cern.ch/jira/projects/FLXUSERS

Manual Version GBT F/W Revision FULL Mode F/W
Revision

LTDB Mode F/W
Revision

Software Release

0.6 5214 N/A N/A 3.7

< 0.6 4400, 4500 N/A N/A 3.4.2

Chapter 2. Introduction to FELIX
FELIX is a new detector readout component being developed as part of the ATLAS upgrade effort.
FELIX is designed to act as a data router, receiving packets from detector front-end electronics and
send it to programmable peers on a commodity high bandwidth network. Whereas previous
detector readout implementations relied on diverse custom hardware platforms, the idea behind
FELIX is to unify all readout across one well supported and flexible platform. Rather than the
previous hardware implementations, detector data processing will instead be implemented in
software hosted by commodity server systems subscribed to FELIX data. From a network
perspective FELIX is designed to be flexible enough to support multiple technologies, including
Ethernet and Infiniband.

Given the general purpose nature of the FELIX effort, the system has also been adopted by several
non-ATLAS projects. This document is therefore targetted at users both within and outside of the
ATLAS upgrade effort.

2.1. FELIX Variants and Functionality
FELIX supports two different link protocols for the transfer of data to and from front-end peers.
Each is supported by the same hardware platform, with separate firmware revisions both based on
the same core modules.

2.1.1. Gigabit Transceiver (GBT) and the Versatile Link

The Gigabit Transceiver (GBT) chipset and associated technologies were developed as part of
CERN’s Radiation Hard Optical Link Project[gbtmainpage]. The goal was to develop a radiation hard
bi-directional link for use in LHC upgrade projects. GBT provides an interface an optical
connectivity technology known as the Versatile link[versatilelink], which provides high bandwidth
and radiation hard transport of data between GBT end points.

The GBT transmission protocol is designed to aggregate multiple lower bandwidth links from front-
end electronics components into one radiation hard high bandwidth data link (running at up to 5
Gb/s). The logical lower bandwidth links which make up a GBT link are known as E-links. The
details of how E-links are supported within the FELIX project are discussed in Section 6.1.5 of this
document.

The GBT protocol has been implemented both in dedicated hardware (e.g. the GBTx chip[GBTx]) as
well as directly on FPGA platforms, the latter of which has been built on for use by the FELIX
project[GBTmanual].

2.1.2. FULL Mode

Within the context of the ATLAS upgrade (and subsequently externally) a requirement arose for a
higher bandwidth data link from detector to FELIX than was possible with GBT, which has to
support radiation hardness. These newer clients did not require radiation hardness, and were able
to support a protocol which could be implemented in FPGAs on both sides of the link. The resulting
development is known as 'FULL mode'[fullmodespec], referring to full bandwidth.

The FULL mode protocol is a implemented as a single wide data stream with no handshaking or
logical substructure (i.e. no E-links). The reduced constraints mean that FULL mode links can
operate at a line transmission rate of 9.6 Gb/s, which accounting for 8b10b encoding means a
maximum user payload of 7.68 Gb/s.

Note that FULL mode in FELIX is currently only implemented in the from detector to FELIX
direction, as there are currently no requirements for the to detector direction. FELIX FULL mode
variants therefore implement to detector links with the GBT protocol, as this is sufficient for the
required payloads.

2.1.3. Propagation of ATLAS TTC Information

As well as transferring data to and from front-ends, FELIX is also required to interface with the
ATLAS Timing, Trigger and Control (TTC) system. FELIX must provide TTC information both to the
front-ends at full granularity, and to network peers in a reduced form. The propagation of TTC
information to the front-end is performed via dedicated E-links.

Chapter 3. Hardware Requirements and
Setup

3.1. Recommended Hardware Platforms

3.1.1. FPGA I/O Hardware: VC-709 (Commodity Platform)

The hardware platform recommended for FELIX operation in detector test stands is based on the
Xilinx® VC-709 Connectivity Kit[xilinxvc709]. This platform provides 4 optical transceivers
compatible with both GBT and 'full mode' operation as well as a Xilinx® Virtex®-7 series FPGA and
8-lane PCIe Gen 3.0 interface. The TTC interface for the system is provided by the TTCfx v3 FMC
mezzanine card. An image of the VC-709 board and guide to features is presented below.

Figure 1. The VC-709 development board.

3.1.2. FPGA I/O Hardware: Custom Platforms

The hardware platform chosen for the final FELIX implementation in Phase-I is a custom interface
board designed by BNL. The initial version used for FELIX is known as the BNL-711, with a
modified design (BNL-712) selected for the final system.

BNL-711

The BNL-711 hosts a Xilinx® Kintex® UltraScale FPGA on a board capable of supporting 48 high
speed optical links via MiniPOD transceivers, with a 16-lane PCIe Gen 3.0 interface. On-board clock
jitter cleaning and TTC circuitry mean that no mezzanine attachment is required to connect with
ATLAS clock and control systems. An image of the BNL-711 and its key features are presented
below. While the board is still in use in a number of test stands, it is recommended that subdetector
teams adopt the BNL-712 for any new developments.

Figure 2. The BNL-711 V1.5 board.

BNL-712

The BNL-712 (a.k.a. BNL-711 v2) is similar to the BNL-711 in that it hosts a Xilinx® Kintex®
UltraScale FPGA on a board capable of supporting 48 high speed optical links via MiniPOD
transceivers, with a 16-lane PCIe Gen 3.0 interface. The BNL-712 is a smaller card, saving space by
not hosting the unused SO-DIMM slotsOn-board clock jitter cleaning on-board the BNL-712. Various
other improvements to the FPGA pin-out to make it easier to route signals to both PCIe endpoints.
In order to make the board compatible with future developments, the TTC circuitry has been
moved to a mezzanine. This makes it possible to connect both to current ATLAS clock and control
systems and candidates for future implementations. An image of the BNL-712 and its key features
are presented below. BNL-712 cards are available for subdetector test stands for commissioning
and integration. Please contact the FELIX group for more information.

Figure 3. The BNL-712 board.

The timing mezzanine for the BNL-712 which is compatible with the ATLAS TTC System in Phase-I is
show in Figure 4.

Figure 4. The ATLAS Phase-I TTC Mezzanine for the BNL-712.

For more detailed information on the BNL-712, please consult the dedicated user manual[flx-712].

3.1.3. FELIX Host Systems

The current recommended hardware platform for a VC-709 FELIX system is based on the
Supermicro® X10SRA-F motherboard[X10SRA-F]. The system should be populated with at least 32
GB of DDR4 RAM and an Intel® Xeon™ E5 family CPU (v3 or v4) with at least six real cores. Please
see the motherboard manufacturer specification for more details.

3.2. Installation of VC-709
For full details regarding the VC-709 please consult the manual provided with your equipment. In
terms of installing the card into a FELIX system please follow the following guidelines. The VC-709
should be installed into an 8-lane or 16-lane Gen 3 PCIe slot on the host motherboard, taking into
account the need for clearance on all sides. The board must be connected to power from the
system’s internal ATA power supply via a custom Molex adapter provided with the board. The
power socket on the board is shown on the upper right hand corner of Figure 1, labelled '12V
Power'. Ensure that the power switch, just above the socket, is switched to the on position.

The FPGA aboard the VC-709 is configured via an on-board JTAG programmer, which can be
connected to a mini-USB cable with the 'USB JTAG Interface' on the top left of Figure 1. A right
angled mini-USB connector is recommended to minimise obstruction of the hosts case lid, although
a straight cable is provided for free with your kit. Note that this has currently only been tested for
USB2, which is the recommended interface. In order to be able to program the card please connect
it to a convenient USB port on your host machine, or to another machine which you wish to use as a
programming server. Finally, ensure that the link transceivers are safely inserted into the on-board
cages.

3.3. Installation of BNL-711 and BNL-712
The BNL-711/712 should be installed in a 16-lane Gen 3 PCIe slot on the host motherboard. The
board must be connected to power from the system’s internal ATA power supply via an 8-pin PCIe

power connector (of the type commonly used for graphics cards). Note that the board does not
support use of Xilinx power connectors.

The BNL-711/712 provides a JTAG connector to which programmers can be connected for FPGA
configuration. The Digilent® HS2 programmer is recommended for this purpose. Aboard the BNL-
711/712 are a series of jumpers to permit users to reconfigure various I/O properties of the board.
For a full specification of these please consult [app:bnl711] for the BNL-711 and the dedicated user
manual for the BNL-712[xilinxvc709].

3.4. Connecting to an existing TTC system
This section is only relevant to users who wish to connect their FELIX system to a ATLAS TTC
infrastructure. Other users should skip this section and proceed directly to clock configuration.

3.4.1. VC-709 Only: TTCfx v3 Overview and Installation

For VC-709 systems the TTCfx mezzanine card[CERN_TTC_FMC] is designed to connect your FELIX
card to the ATLAS TTC system as used throughout Run 1-3 operations[ttc]. BNL-711/712 systems do
not require this component as the same logic is implemented on the BNL-711/712 itself. The TTCfx is
a small FMC mezzanine card, as shown in Figure 5, which can be attached to the VC-709 via the
single FMC slot on-board (top left of Figure 1).

Figure 5. Image of a TTCfx v3 card.

To complete the installation, you must then connect the P and N SMA GTH Reference Clock inputs
on the VC-709 (middle bottom of Figure 1) to the SMA connectors on the TTCfx v3 (P to P and N to N)
via suitable SMA cables, [1: An example SMA cable is: http://eu.mouser.com/ProductDetail/
Amphenol-RF/135103-01-0600/?qs=sGAEpiMZZMufBZYvsU/be\%2bYZgfjb/mihYZ4wKp9N4jE=]. The
right angle side goes on the VC-709, to make the cable bending a bit more gentle. If you have space
in your chassis, straight SMAs on both ends will do the job as well.

The TTCfx mezzanine card requires no specific firmware programming, and should work out of the
box once connected to a TTC peer and a software configuration script is run. More detail is
provided in the next section.

http://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600/?qs=sGAEpiMZZMufBZYvsU/be\%2bYZgfjb/mihYZ4wKp9N4jE=
http://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600/?qs=sGAEpiMZZMufBZYvsU/be\%2bYZgfjb/mihYZ4wKp9N4jE=

3.4.2. Connecting TTC and BUSY

This section assumes you are connecting a TTCvx-based system to FELIX. Notes on setting up such a
system are available in [app:TTC]. Once set up, connect a TTC output from the TTCvx to the TTCfx v3
using a Multi-Mode fibre with ST connectors. The connector on the TTCfx v3 end is visible in Figure
5, on the upper left hand side. On the BNL-711 the ST and LEMO connectors are located on the
upper left part of the board, as shown in Figure 2. On the BNL-712 they are integrated into the TTC
mezzanine, as shown in Figure 3.

Finally, use a LEMO connector to connect the TTCfx v3 or BNL-711/712 to a destination for BUSY
signals (as per your use case). The connector on the TTCfx v3 is visible in Figure 5 on the upper
right hand side. The BUSY signal is the ATLAS standard open-collector BUSY signal, but with a weak
24 kOhm pull-up to 1.8 V to allow viewing on an oscilloscope.

3.5. Configuring FELIX Clock
This section assumes you have set up the FELIX software infrastructure as in Section 5. If you have
not, then please do so before proceeding.

3.5.1. Clock Source Selection

FELIX requires a clock source in order to synchronise propagation of signals both within the FPGA
and to external peers. The FELIX firmware supports the use of both a received clock from an
external TTC source as well as an internally generated clock for users who don’t need or have
access to a such a system.


Older firmware revisions did not support this feature, so please ensure your
version is labelled with CLKSELECT to ensure compatibility.

To check your current clock selection, run the following command:

flx-config get MMCM_MAIN_OSC_SEL

A result of 0x1 indicates a system configured for TTC clock, while 0x0 indicates a local clock is in
use. To change your clock selection run the following:

flx-config set MMCM_MAIN_LCLK_FORCE=0xN

For N = 0 or 1 as needed. It is also possible to select your clock source via the elinkconfig graphical
tool. More information on this feature will be provided in Section 6.1.1.3.

Another way to view the overall clock status by running via the FELIX info tool, or flx-info. This
can be run with no command line parameters to dump summary information for your board as
follows:

flx-info

Clock settings can then be viewed in the 'Clock Resources' section, as shown in Figure 6.

Figure 6. flx-info Clock Resources Output.

3.5.2. TTC Clock Recovery: ADN2814

Should you wish to use a TTC clock source, you must next check that your FELIX board’s ADN2814
clock recovery chip[ADN2814] is functioning correctly. Non-TTC users can skip this section.

The overall status of your ADN2814 is reported in the Clock resources report from flx-info as show
in Figure 6. For more detail on the chip’s status, run with the following extra parameter:

flx-info ADN2814

If your chip is functioning correctly, and you have a TTC system connected, you should see output
matching Figure 7.

Figure 7. flx-info ADN2814 status output.

If the output differs (e.g. if you see a loss of lock reported) please check your connections before
resetting the ADN2814 using the following:

flx-reset ADN2814

3.5.3. Clock Jitter Cleaning

Whether you are using an internal or external clock, the signal must be cleaned to minimise jitter
and ensure stable performance. FELIX uses one of two dedicated chips for jitter cleaning depending
on your clock source and hardware.

TTC clocks should be cleaned by the Si5345 chip[Si5345], which is hosted by the TTCfx v3 for VC-709
systems as well as on-board the BNL-711/712. Non-TTC clocks can also be cleaned by the Si5345, but
for those who don’t have a TTCfx v3 the VC-709 also hosts a different cleaning chip, the
Si5324[Si5324], which offers sufficient jitter correction for the non-TTC case.



The Si5324 is currently only supported with a dedicated firmware build for those
wishing to connect optical links to FELIX using the FULL mode protocol. Users of
GBT must have a Si5345-based system. Should you wish to use the Si5324 please
make sure to check the filename of the firmware tarball provided on the FELIX
firmware distribution site to ensure the name of the cleaner is present.

Whichever your use case, your FELIX card must be configured to the correct jitter cleaner in order

to function correctly. This can be achieved using the flx-init command line application as follows

flx-init -T <N>

For Si5324 use N = 1, for Si5345 use N = 2.


you will have to redo this jitter cleaner initialisation step each time you change
FELIX clock source to maintain normal operation.

To check the status of your jitter cleaner, use the following command:

flx-info <cleaner name>

3.6. Connecting and Initialising Optical Links
Assuming you have set up your FELIX clocks specified above for your use case, set up the FELIX
software environment as described in Section 5 and programmed the FPGA aboard your VC-709 or
BNL-711/712 as described in Section 4 you are now nearly ready to attempt to connect the system to
a peer via optical link using either GBT or FULL mode protocols.

The first step to bringing up your links is to connect your fibres to the transceivers aboard the VC-
709 or BNL-711/712, ensuring not to place excessive strain on them. Once the connectors are
properly seated, you can check the physical status of your links.

3.6.1. Physical Link Layer Status: VC-709

In order to check the status of your physical connections for a VC-709 (which are SFP based) run the
following:

flx-info SFP

Look for the lines marked 'Link Status' in the output as per Figure 8

Figure 8. flx-info VC-709 SFP physical status output.

3.6.2. Physical Link Layer Status: BNL-711/712

In order to check the status of your physical connections for a BNL-711/712 (which are MiniPOD
based) run the following:

flx-monitor POD

There will be many lines of output, but you should check the section labelled 'MiniPODs' as shown
in Figure 9.

Figure 9. flx-monitor BNL-711/712 MiniPOD physical status output.

If your physical link is working correctly you should see loss of latch status 'N' for the relevant
MiniPOD, where 814 corresponds to Tx and 824 to Rx PODs respectively. For a physical map of
MiniPOD locations please consult [app:bnl711] (same for both BNL-711 and BNL-712).

3.6.3. Logical Link Layer Initialisation

Once you have established a successful physical connection, the next step depends on your choice
of logical protocol. If you are connecting with the FULL mode protocol your logical links should
then come up immediately. You should therefore be ready to attempt to transfer data to FELIX.

If you are connecting with GBT you will need to train the links to bring them up by running the
following:

flx-init

This should run reporting no errors. You can then print the status of your GBT links with:

flx-info GBT

The results should match Figure 10.

Figure 10. flx-info GBT status output (VC-709 version, a BNL-711/712 can have up to 24 channels
displayed).

If this looks correct your GBT links should now be fully operational. Before attempting to transfer
GBT data please ensure you have followed the guide in Section 6.1 for details on how to configure
your E-links.

Chapter 4. Firmware Releases and
Programming

4.1. Firmware Distribution Protocol

4.1.1. Release Announcements

FELIX firmware (and software) releases will be announced on the following e-group:

atlas-tdaq-felix-users@cern.ch

Please subscribe to this group to stay up to date with the latest updates. All new releases will
include a detailed change list and reference to the associated version of this user manual.

4.1.2. Firmware Distribution Site

Tarballs of firmware releases (containing both .bit and .mcs files) are made available via a dedicate
web page:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/firmware

Versioning information is available in the on-site 'bitfiles_change_log.md', please download the
latest version as indicated.


all recent firmware revisions are labelled 'CLKSELECT' to indicate that they
support both dual TTC and local clock sources. Older revisions were dedicated to
one clock or another, but these should now be considered deprecated. Please
upgrade to a newer revision if you have such a version.

4.1.3. Supported Link Protocols & Encoding

FELIX firmware builds currently support the following link protocols and encoding options as part
of the standard release.

Mode Support

GBT Normal Mode 8b/10b Y

GBT Normal Mode HDLC Y

GBT Normal Mode Direct N

GBT Wide Mode N

FULL Mode Y

4.2. Firmware Programming
The FPGAs aboard both the VC-709 and BNL can be programmed directly via a JTAG interface using
the Vivado™ software suite[vivado2016]. For the VC-709 this method also makes possible to

mailto:atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/firmware

program the on-board FLASH ROM. A configuration programmed into the FPGA directly will be lost
if the machine is switched off, whereas a configuration programmed in the FLASH will persist. This
will make it possible to retain the desired programming state of the card e.g. if transported. This
section will describe how to program the card using all available methods.

4.2.1. JTAG Connectivity

The VC-709 comes with an on-board JTAG programmer, accessible via USB, as described in Section
3. The BNL-711/712 does not have an on-board programmer, and as such you will need to acquire a
USB-accessible programmer. The FELIX developers recommend the Digilent® HS2 for this purpose.

4.2.2. Setting up the Vivado™ Suite

Specific installation instructions for the Vivado™ suite are provided with your development kit.
Note that the instructions in this section are compatible with the 2014, 2015 and 2016 releases of
the suite. We recommend you install the software locally on the PC you wish to use as your
programming server. This should be connected to your VC-709 in your FELIX host via USB as
described in Section 3.2. When you first connect your system via USB you will need to run a Xilinx®

setup script to configure the bus properly (path may vary depending on product year):

source Xilinx/Vivado/2016.4/data/xicom/cable_drivers/lin64/digilent/install_digilent.sh

The Vivado™ environment can be started with the following commands:

source Xilinx/Vivado/2016.4/settings64.sh
vivado &

You will then be presented with the Vivado™ splash screen, where you should select 'Open
Hardware Manager' as shown in the red box in Figure 11.

Figure 11. Vivado™ Splash Screen.

From the hardware manager select 'Open Target' on the top left as shown in Figure 12 and choose
'Open New Target'.

Figure 12. Vivado™ Hardware Manager.

From this point, select 'Next' on the following screen and 'Connect to Local Server' after that, once
again press 'Next'. This should bring you to the hardware list. On this screen select the FPGA on
your VC-709 or BNL-711/712 from the uppermost list (if you have only one board there should be

only one entry, if not, find yours in the list by name). The screen you will see is shown in Figure 13.
Once you have found your FPGA and selected it press 'Next' on the bottom right and 'Finish' on the
following screen.

Figure 13. Vivado™ Target Selector with VC-709’s Virtex7 FPGA selected, as indicated by red arrow (FPGA
ID will vary from model to model). The BNL-711/712’s Kintex Ultrascale FPGA will appear as xkcu115_0

From here, you will be taken to the main programming interface, as shown in Figure 14. You are
now ready to program your FPGA or FLASH.

Figure 14. Vivado™ Programming Interface.

4.2.3. Programming the FPGA Directly

To program an FPGA directly, select it from the device list on the main programming window (as
shown in Figure 15, right click and select 'Program Device'.

Figure 15. Selecting Device to Program.

You will now be asked to select a .bit file as shown in Figure 16. This is available in the firmware
release tarball as specified at the start of this chapter. You do not need to select a debug probes file.
Once a file has been chosen, select 'Program' on the bottom right to write the file to the FPGA. Once
complete your FPGA should now be fully reprogrammed.

Figure 16. Selecting Bit file to Program.

4.2.4. Programming the FLASH ROM (VC-709)

To program the FLASH ROM start once again from the main programming window. Find and right
click on your FPGA and select 'Add Configuration Memory Device' in the list, as shown in Figure 17

Figure 17. Select Vivado™ Flash Programming Dialog.

From here you will be taken to the a dialog requesting that you select the memory device you wish
to program. On the VC-709 this will typically be a Micron memory device with given parameters. To
find it quickly enter the criteria demonstrated in Figure 18 and select the device as shown. Look for
the device with alias '28f00ag18f'.

Figure 18. Memory Device Selection Interface.

Once selected, press 'Ok' on the bottom right and 'Ok' again on the following window asking 'Do you
want to program the configuration memory device now?'. On the subsequent dialog, choose the
.mcs file you wish to program (provided with your firmware release) as shown in Figure 19. Select
'Ok' at the bottom to program the FLASH. Once complete your card should be programmed with a
non-volatile firmware installation that will survive loss of power to the host.

Figure 19. Selecting .mcs file to program.

4.2.5. Programming the FLASH ROM (BNL-711/712)

FLASH programming for the BNL-711/712 is done via means of the fflash application, which is
provided as part of the FELIX software suite. Please consult the instructions provided in Section
6.5.7. Note that the BNL-711/712 has 4 different FLASH sectors which can be programmed. The
board will by default come up from powercycle loaded from the sector specified by the jumper
configuration described in [app:bnl711]. Please ensure you program the correct sector in order to
see the expected image loaded.

4.2.6. Enabling new FPGA Configuration

If you have programmed our FPGA directly, please soft reboot your machine to pick up the new

configuration. For changes to the FLASH ROM a full powercycle may be needed to pick new
firmware, unless you have manually programmed the FPGA from FLASH as described in Section
6.5.7. In the latter case a soft reboot will be sufficient.

PCIe hotplug procedure

Should you wish to avoid rebooting your machine (assuming a powercycle isn’t required) it is
possible to rescan the PCIe bus re-synchronise with the new firmware image. Note that this
procedure hasn’t been fully validated, and may produce inconsistent results. It should only be
attempted if a reboot is prohibited. First, remove the device from the bus list as follows (root
privileges needed):

echo 1 > /sys/bus/pci/devices/0000:<bus ID>/remove

(where you get the bus ID of the device from lspci)

Then, rescan the bus to bring the device back with:

echo 1 > /sys/bus/pci/rescan

It is also recommended that you restart the FELIX driver at this point to pick up the new image:

./etc/init.d/drivers_flx restart.

Chapter 5. Software Distribution and
Installation

5.1. Software Distribution Protocol

5.1.1. Pre-requisites

FELIX software is now formally supported for systems using the SLC6 and CentOS operating
systems.

5.1.2. Release Announcements

FELIX software (and firmware) releases will be announced on the following e-group:

atlas-tdaq-felix-users@cern.ch

Please subscribe to this group to stay up to date with the latest updates. All new releases will
include a detailed change list and reference to the associated version of this user manual.

5.1.3. Release Distribution Site

The main distribution mechanism for new software releases is via a dedicated web page:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/software

Here users will be able to find the latest firmware and software. The newest recommended version
is marked in all cases. Installation instructions for the software suite and driver can be found
below.

FELIX Driver

The latest version of the FELIX driver is available on the distribution site within 'software/drivers'.

FELIX Software Suite

The latest version of the FELIX software suite is available on the distribution site in within
'software/apps'. The software release is provided as in tarball and rpm forms to suit different use
cases. A docker image with the release pre-installed is also available.

5.2. Software Installation Instructions

5.2.1. Driver RPM Installation Instructions

DKMS

The FELIX driver makes use of 'Dynamic Kernel Module Support' (DKMS) to automatically track
kernel changes once installed. Users should therefore only need to change their installation if a new

mailto:atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/software

version of the driver itself is released.

Removal of Existing Driver Installations

In order to update the FELIX driver it will first be necessary to remove any existing driver
installations from your system. To do this please follow the procedure outlined below. You will
require superuser privileges in order to perform the driver de-installation itself and subsequent
cleanup.

To check if a driver is already installed issue the following command:

rpm -qa | grep tdaq

If a driver rpm is installed you’ll see a response along the lines of:

tdaq_sw_for_Flx-4.0.3-2dkms.noarch

To remove the driver do the following (substituting 'filename' for the results of the search in the
previous step):

rpm -e filename

Once this operation is complete you will be in a position to install the latest FELIX driver.

Installation of New Driver

To install the FELIX driver RPM, run the following command (superuser privileges required):

yum install tdaq_sw_for_Flx-4.0.3-2dkms.noarch.rpm

(this should take 1-2 minutes to complete, due to the need to compile the driver for your kernel as
per the DKMS framework)

Once the driver is installed you should start it as follows (as superuser):

./etc/init.d/drivers_flx start

Once started you can check the status of the card using:

cat /proc/flx

You should see output along the lines of Figure 20 (will vary depending on your firmware version).

Figure 20. Example output from /proc/flx

Driver Flags

The /proc/flx interface makes it possible to toggle certain parameters by issuing the following
command:

echo <action> > /proc/flx

By substituting <action> it is possible to do the following (only a selected list below):

• Enable/disable compatibility mode with RM3 with the parameter 'rm3' or 'rm4' respectively.

• Enable/disable automatic re-ordering of FELIX cards to a more intuitive order w.r.t device type
('swap' or 'noswap').

• Clear all device locks with 'clearlocks'

5.2.2. Installation of FELIX Software Suite

The FELIX software release is available pre-compiled as a tarball which can be installed anywhere
and then set up for use by running a command line script. Each user can download their own
version, or the release can be installed centrally and the location of the script shared with users.

To unpack the tarball, run the following command:

tar -xvzf <filename>

Once unpacked, a setup script must be run to enable access to all libraries and binary files. The
script can be run as follows from the release base directory:

source felix-04-00-03/x86_64-slc6-gcc62-opt/setup.sh

This script will need to be run with every new session, or added to the environment setup
procedure. Once complete you should have access to all FELIX software. In the next section we will
describe how to test your installation to verify full functionality.

Chapter 6. Basic Tools
The FELIX software suite comprises both high and low level tools. At the highest level, the FelixCore
application is responsible for communication and bulk dataflow in a full slice system. At a lower
level, the suite provides a number of tools, both command line and GUI based, to facilitate system
configuration and testing. This chapter will describe these low level tools such that users will be
able to effectively communicate with, configure and test their system.

If you are looking to set up a full system slice with data output to a network please consult Section
7, which describes the FelixCore Application and NetIO library. This section assumes that you have
set up your FELIX software environment as described in Section 5. None of the tools in this section
should require superuser privileges to run. All tools presented below work in both GBT and FULL
mode, and for VC-709 and BNL-711/712, unless otherwise stated. Where special parameters are
needed to distinguish modes this will be indicated.

A quick reference for all tools to be covered in this section is presented in Table 1.


the FELIX software suite contains a number of tools which are considered for
developer use only. All tools which are rated for use by front-end users are listed
in this document. Use of any other software is not recommended unless asked to
do so by a FELIX developer.

Table 1. List of all recommended user tools. For more information on each please click the tool name to visit
the dedicated section of this document.

Low Level Tools

flx-
info

View FELIX hardware and firmware status information

flx-
confi
g

View and modify low-level firmware parameters

flx-
init

Initialise FELIX, as well set as low level GBT and clock/jitter
cleaning parameters

flx-
reset

Reset FELIX or specific component

flx-
monit
or

Status information for FPGA, LTC2991[ltc2991] or Minipod
devices on a BNL-712 or BNL-712.

Dataflow Tools

fdaq Receive data from FELIX and save to files or perform sanity
checks

fuplo
ad

Upload data through FELIX to a front-end E-link

FELIX Configuration Tools

Low Level Tools

elink
confi
g

GUI for link and data generator configuration.

felink Calculate link IDs given inputs with differing formats.

ferev
erse

Reverse the endianness of data passing through an E-link.

fgpol
arity

Switch 0/1 polarity of all data coming or going through a
specific GBT link (formerly fgpolar).

fecon
f

Upload link and/or data generator configuration to FELIX
from the command line.

femu Control FELIX data generators.

feto Control FELIX timeouts (global, TTC and link data, a.k.a
'instant timeout').

fflash Command line programming tool for firmware images in
BNL-711 or BNL-712.

General Debugging Tools

fchec
k

Perform configurable sanity checks on data from a file or
dump selected data blocks to screen.

fedu
mp

Perform sanity checks on data from a file or dump selected
data blocks from a file to screen.

fec Demo control and communication with GBT-SCA chip (GPIO,
ADC, DAC and I2C).

Remote Communication and Configuration Tools.

fic(e) Read or write GBTx chip registers via the GBT-link.

fgbtx
conf

Read or write GBTX registers via a GBT-SCA I2C channel.
(formerly fgconf).

6.1. E-link Configuration with elinkconfig
Before FELIX can be used to transfer data its input and output links must be configured. The link
configuration for a given FELIX card can be accessed and modified using the 'E-link configurator'
application, or ‘elinkconfig’. This is a GUI based tool to compile an E-link configuration or to inspect
and/or edit the E-link configuration read from a given card, and to write the configuration and
corresponding emulator data contents to a given card. The tool supports both GBT and FULL mode.


the link configuration must be manually refreshed every time a FELIX FPGA is
reprogrammed, including power-cycling of a host!

To run the elinkconfig application issue the following command:

elinkconfig

From here you will reach the main configuration panel as shown in Figure 21

Figure 21. Main panel - elinkconfig

The elinkconfig interface is split into three main areas. At the top there are two control bars to set
FELIX card parameters, open/save configuration files as well as link selectors. The left main panel
displays the from front-end to FELIX/host configuration for the selected link.

Figure 22. elinkconfig panel split. The uppermost panel (purple box) controls global settings and GBT
selection. The left main panel contains the E-link configuration for the from front-end to host direction, the
left main panel the from host to front-end direction

6.1.1. Global Panel

The elinkconfig global panel, shown in more detail in Figure 23 provides the top level interface for
the tool. From there it is possible to select which FELIX card within your system you wish to
configure, which link within that card, which link mode, as well as a number of other configuration
properties. It is also possible to open previous configuration files, save new ones, and read the
current configuration from the selected FELIX card.

This panel also contains an advanced developer feature allowing you to select the maximum chunk
size for a given E-link width - users are recommended to avoid changing these settings as they may
cause unexpected behaviour.

Figure 23. elinkconfig global panel.

From the global panel it is possible to access a number of sub-panels, as indicated in Figure 23.
These give access to more advanced configuration options, details of which are presented below.

Data Path Fan Out Selectors: TH_FO and FH_FO

FELIX operates two separate data generators within its firmware, one attached directly to the data
path going to the host, and one attached to the path going towards the front-end. While the
generators are attached, they have mutually exclusive access to the data path with regular non-
emulated data in both directions. To avoid the two data types colliding only one type may access the
path at a time. The fan out selectors control this access by ensuring that only internally emulated
data or external data can be configured to pass at any one time. Most FELIX applications are able to
configure these selectors automatically, but for the purposes of user testing it may be necessary to
set these values manually. The selectors are accessed via the TH_FO (to host) and FH_FO (from host)
buttons in the global panel. The resulting dialogs are presented in Figure 22.

Figure 24. Fan out control for to-host (left) and from-host (right) directions. The setting for each link is
displayed separately (in this case for a 4-link VC-709 system). It is also possible to lock the settings using the
dedicated checkbox.

In order to switch the selector value simply open the required dialog and click on the link number
you wish to toggle. A link displayed with its number alone is set to external data, if a link is
displayed with its number plus 'E' it is in emulation mode. It is also possible to set/unset all values
using the 'All' and 'None' buttons provided.


Changes made in this dialog are immediately propagated to the FELIX card in
question once you select 'OK'.

In some cases a user may wish to prevent other applications from automatically changing these

settings. For example, if a specific link is nominated for TTC information transfer it may be
convenient to fix this to external data for the duration of a test. In this case it is possible to lock the
values by selecting the 'locked' check box. Applications will then be unable to change these settings
until the card is reconfigured from this interface or the FPGA is reprogrammed. More information
on configuring TTC transfer to the front-end are available in Section 6.1.3 below.

Data Timeout Control Dialog

FELIX offers the facility to time out pending incoming data after a configurable window from
receipt of the first related packets. This is applicable for both regular and TTC data (in the to-host
direction). Should data time out then all available blocks are transferred to the host. The timeout
feature is enabled by default, but can me modified or disabled/re-enabled via the control dialog
accessible by selecting the 'Timeout' button in the global panel. This will open the dialog shown in
Figure 25. From here it is possible to disable/enable both regular data and TTC timeouts using the
check boxes, as well as modify the timeout window sizes. This should typically only be done under
the guidance of a FELIX developer for debugging purposes.


Changes made in this dialog are immediately propagated to the FELIX card in
question once you select 'OK'.

Figure 25. elinkconfig data timeout control dialog.



EC and TTC2Host data are always subjected to an immediate time-out,
independent of the global time-out. In addition it is possible to enable a time-out
per E-link independent of the global time-out setting, which may be important for
E-links carrying irregular and small data fragments such as those connected to
GBT-SCA devices.

Clock Source Selector Dialog

As mentioned in Section 3.5.1, FELIX supports two different firmware clock sources. It is possible to
switch between these sources from elinkconfig from the clock source selector dialog, accessible by
clicking the 'clock' button in the global panel. The selector dialog is shown in Figure 26, and is a
simple two button toggle between TTC and local clock.


Changes made here will be immediately propagated to the FELIX card in question
once you select 'OK'.

Please also consult Section 3.5.3 before making any clock changes, to ensure you correctly configure
your FELIX card’s jitter cleaner post-clock change to ensure continued stable operation.

Figure 26. elinkconfig clock source selector dialog.

6.1.2. To-Host Panel

The to-host panel provides access to the configuration of the currently selected link (GBT or FULL
mode) in the to-host direction. The type of panel to show can be selected in the global panel as
described in Figure 23. In the GBT case it is possible to configure the complete set of E-links
associated with this link, split up by E-group. It is also possible to configure the SCA and TTC links
(see Section 6.1.6.4 for more info), the latter of which provides L1 accept information to the host.
For each link it is also possible to select the type of encoding to be used, although 8b10b is
recommended for all regular data links. A more detailed look at this panel is presented in Figure 27.

Figure 27. elinkconfig to-host panel (GBT mode). Various configuration options and tools are indicated as
they appear in the panel. Note, on a GBTX it is not possible to have different-width E-links within one E-
group (even if elinkconfig permits it).

In FULL mode this panel provides fewer options, as such this link mode does not contain logical E-

link subdivisions. This version of the panel is presented in Figure 28.

Figure 28. elinkconfig to-host panel (FULL mode).

6.1.3. From-Host Panel

The from-host panel makes it possible to configure the GBT links transporting data from FELIX
towards connected front-end electronics. This panel only exists in GBT mode form as FULL mode is
only a to-host protocol, and any FULL mode firmware will implement from-host links as GBT. A
more detailed look at this panel is presented in Figure 29. A key difference between this panel and
the to-host panel is that the link encoding available also includes several different TTC paths (in this
case TTC-1 and TTC-2 are shown) which are for the propagation of TTC information from FELIX to
the front-end. Depending on the E-link width used TTC paths from 0 to 4 are can be made available.
Using this encoding selector it is therefore possible to nominate specific E-links to carry TTC data as
needed.

Figure 29. elinkconfig from-host panel (GBT mode). Various configuration options and tools are indicated as
they appear in the panel.

6.1.4. Link and Data Generator Configuration Upload Dialog

The to-and-from host panels allow you to put together a complete configuration set for all links
handled by a given FELIX card. Once you have prepared your desired configuration, you can
upload it to the FELIX in question by selecting the 'Generate/Upload' button in the upper panel on
the right. This will open the upload dialog, as shown in Figure 30. The GBT version is shown, but the
FULL mode variant is essentially identical, beyond some disabled developer features.

The E-link mapping for the FELIX data generators can be configured by selecting the 'EMU' link in
elinkconfig (in previous versions this was done by selecting any GBT link). If the option to save to a
file is used the emulator config is now saved separately to the rest of the links. If an older
configuration file (which does not contain the new emulator configuration data) is read into the
tool and uploaded, the configuration of link 0 is automatically used in its place.

Once the panel is prepared, select 'Upload' from the middle box labeled 'E-link Configuration' to
write your configuration to the card. If you also wish to configure the FELIX on-board data
generators for tests in emulation mode select the 'Upload' button in the lower 'Emulator Data' box.


If you are running in emulation mode and wish to change your E-link
configuration you must remember to upload to the emulator every time you
upload a change.


In FULL mode the data generators will only produce FULL mode data in the to-host
direction. In the to-front-end direction GBT data will be produced. In GBT mode
GBT data will be produced in both directions.

Figure 30. elinkconfig upload panel. Any features not indicated with arrows should be considered for
experts only, and used only under consultation with a FELIX developer.

Once your configuration is uploaded you can then proceed to use the FELIX system as normal, the
new settings will take effect immediately. To avoid unexpected behaviour please avoid
reconfiguring the links while the FELIX card in question is in active use in your system.

6.1.5. Guide to Valid E-link Configurations

The E-link configuration uploaded to a FELIX card is actually a set of instructions to a component
known as the Central Router. This is responsible for sending incoming data (in either direction) to
the correct remote end point, as defined by E-link. For FULL mode there is no such thing as an E-
link, and so the Central Router merely propagates a wide stream of bits across the link. In the GBT
case, E-links are defined as separate logical links within a given physical GBT link. E-links can have
(in the current implementation) three different bit widths, which given the link clock defines the
maximum bandwidth they can sustain. The widths are 2, 4 and 8 bits, running at 40, 80 and 160
MHz respectively. There is currently no support for 16 bit E-links. A GBT link can therefore be
considered as a logical aggregation of low bandwidth links into one high bandwidth transfer. For
full details please consult the official documentationSection 8.1.2.2.

In 'Normal' mode, a GBT link is 80 bits wide, and this puts an upper limit on the number of E-links.
It is therefore possible to have few wide 8 bit links, a larger number of narrower 2 or 4 bit links, or
a mixture of the two. Should a GBT be operated in 'Wide' mode (not currently supported) then a
further 32 bits are available within the GBT link (i.e. 112 in total), allowing for more E-links. The

structure of a normal mode GBT frame is shown in Figure 31. It is up to the user to decide how
much of the GBT width to utilise as per their front-end needs. It is permitted to leave link
bandwidth unused by not assigned E-links to that part of the GBT frame.


elinkconfig allows it, but on a GBTX it is not possible to have different-width E-
links within one E-group.

Figure 31. Bit structure of a GBT frame, showing E-groups, IC and EC links, as well as GBT header and
Forward Error Correction (FEC).

Within a given GBT link, logical links are subdivided for management purposes into 16 bit wide 'E-
groups'. Each E-group logically contains a combination of E-links up to an aggregate of 16 bits of
width, looking at either extreme this means up to 8 of the narrowest 2 bit E-links at one end, or two
of the widest 8 bit E-links at the other. The E-group is the unit of connectivity around which the
elinkconfig interface is built, with the to and from-host panels designed around E-group
granularity.

Looking within the E-group, there is one further layer of link identification to consider. Each group
supports up to 8 logical 'E-paths'. These correspond to the logical connection end-points which the
Central Router supports. For each E-group it is therefore only possible to send data to 8
destinations, which is designed to correspond to the maximum number of 2 bit E-links. However,
the E-path structure imposes an additional restriction on E-link assignment. Because of the routing
structure the E-path end points needed by E-links of different widths can overlap, meaning only a
link of one width or the other is possible. Consider the routing diagram presented in the to-host
panel in Figure 27. This display is designed to mirror the structure of the Central Router to make the
dependencies as transparent as possible to users.

The active 4 bit E-link in this panel is using E-path 2. This means not only that E-path 2 is
unavailable for the 2 bit E-link which could be assigned to that path (see the column to the right)
but also the 2 bit E-link for E-path 3, as the wider 4 bit link in E-path 2 overlaps with it. It is
therefore possible to either have the 4 bit E-link active, or one or both of the 2 bit links, but 4 bit
link cannot be active at the same time as either 2 bit link. Note that this doesn’t affect the E-link
which could be active in E-path 1, as this doesn’t overlap. In this case this link is disabled through
user choice, not through any logical limitation. However, if you wanted to enable the 8 bit wide E-
link at E-path 1, this would overlap with all 2 and 4 bit E-links to its right, meaning only it could be
active.

To summarise, in order to build a valid link configuration no two links using the same E-path can
be active at the same time within an E-group. Depending on the width of the link in question this
may also disqualify other links of smaller width if they overlap with it. For this reason, elinkconfig

will not allow you to select overlapping links.

Within a given link map, each E-link can be configured to use different encoding formats as per
front-end requirements. This area is still subject to active development, and it is strongly
recommended that users work towards basing systems on 8b10b encoding. For FULL mode 8b10b is
also the default.



There is a known issue with GBTx chips whereby links disconnected from any
front-end source generate spurious data at random intervals. If using FELIX with a
GBTx it is strongly recommended that any links which are disconnected from the
front-end be deactivated in elinkconfig. This will prevent spurious data causing
confusion in front-end testing.

Semi-Static Firmware E-link Configuration

In the 24-channel GBT mode build, the FELIX firmware does not support fully configurable E-links
due to the need to conserve FPGA resources. The set of configurable E-links in this case is described
below.

From Host To Host Encoding

EC link SCA SCA 2 bit HDLC

E-Group 0 8 x SCA 8 x SCA 2 bit HDLC

E-Group 1 2 x 8 bits or 8 x 2 bits 8 x 2 bits 8b/10b

E-Group 2 2 x 8 bits or 8 x 2 bits 4 x 4 bits 8b/10b

E-Group 3 2 x 8 bits or 8 x 2 bits 4 x 4 bits 8b/10b

E-Group 4 2 x 8 bits 4 x 4 bits 8b/10b

6.1.6. Guide to common configuration tasks

Working with E-link configurations stored in files

elinkconfig can read and store configuration sets in .elc files. In order to load a previously existing
configuration set into the tool simply select 'Open' from the global panel and choose the file to be
loaded. The GUI will be automatically updated to reflect the new configuration. From here you can
modify the configuration (if needed) by e.g. using the to and from-host panels to enable/disable E-
links. Once your changes are complete you can upload the new configuration to the FELIX card of
your choice using the 'Generate/Upload' button in the global panel. Make sure to upload both the
link and data generator configurations if you wish to use the latter. Finally, you can save your
modified configuration to a file by selecting 'Save' from the global panel.

Modifying the existing E-link configuration on a FELIX card without a file

If you are working without .elc files and wish you modify the existing configuration on a card you
must first load it into the tool by selecting the card in question via the global panel and then
pressing the 'Read Cfg' button. This will populate the GUI with the configuration currently active on
the card. From here you can modify the configuration as required and upload a new version to the
card as advised above. You can also save your configuration to a file.

Configure L1AInfo E-links to host

The FELIX firmware implements a dedicated 'virtual' E-link for this purpose of transferring Level-1
Accept information to the host system for transfer to subscribers on the network. Each FELIX card
provides one such E-link, which may be activated by ticking the checkbox on the right hand side of
the To-Host panel in elinkconfig, as shown in Figure 27. The E-link ID on which the data will be
transferred is shown in the tool.

Each such E-link will provide a 20-byte 'L1AInfo' block containing information for each Level-1
Accept. The contents of the block are presented in Figure 32. More details on this and other FELIX
data structures is available in [app:datastructures].

Figure 32. The Level-1 Accept information message sent to the Back end software (20 bytes) as seen as five
32-bit word.

Configure TTC E-links from host

Users may configure any number of to-front-end links for the purpose of transferring TTC
information to their electronics. The TTC data arriving at the FELIX card will be automatically
decoded, and subsets made available to users for relay to front-ends in a configurable manner. The
subsets which can be sent depend on the width of the E-link chosen for the transfer.

The current configuration sets are presented in Table 2, although this can evolve based on user
requirements. For example, 2-bit E-links can only be configured in 'TTC-0' mode, meaning only the
L1A and the full, non-decoded B-channel data stream can be sent. Alternatively, 4-bit E-links can be
configured to send L1Accepts, Bunch Counter and Event Counter Resets, and a choice of either the
non-decoded B-channel data stream or a user defined broadcast bit. Detector groups should
communicate to the FELIX group which bits in which locations they need.

Table 2. Possible TTC options (Brcst[7:2] are the TTC user defined broadcast command bits (Brcst[1] is ECR,
Brcst[0] is BCR). Bit 0 is the first bit transmitted out.

E-link
option

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0: 2
bits

B-chan L1A

1: 4
bits

B-chan ECR BCR L1A

2: 4
bits

Brcst[2
]

ECR BCR L1A

E-link
option

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

3: 8
bits

B-chan Brcst[5
]

Brcst[4
]

Brcst[3
]

Brcst[2
]

ECR BCR L1A

4: 8
bits

Brcst[5
]

Brcst[5
]

Brcst[4
]

Brcst[3
]

Brcst[2
]

ECR BCR L1A

5: 4
bits

BCR BCR BCR BCR

6: 2
bits

BCR BCR

By selecting the encoding box (as shown in Figure 33) on the to-host panel for any given link it
should be possible to see which options are available for that link.

Figure 33. Example drop-down encoding menu for a 4-bit E-link. As this is a 4-bit link, the TTC-1 and TTC-2
options from Table 2 are available.

Configure SCA E-links to/from host

SCA E-links are 2-bit wide HDLC-encoded links. This so-called EC mode is designed to carry slow
control information to and from any desired front-end location. Users may set any number of 2-bit
E-links (in either direction) to EC mode (not just the GBTx ''EC'' E-link) by selecting the 'EC/TTC'
button (to host panel) or 'EC' button (from host panel), activating a link and selecting HDLC
encoding. Communication with an SCA ASIC requires one TX and one RX link. FELIX performs the
HDLC encoding and decoding.


An OPC-UA server and client for the SCA ASIC are being provided to allow high
level communication with an SCA ASIC by user software.

6.2. Low Level Tools (System Status Monitoring &
Control)
The following section will cover some general tools which allow you to monitor the state of your
FELIX system, as well as make configuration changes and reset the system as necessary. All tools

provide more detailed descriptions of functionality through their help output, accessible by
running the tool with the ‘-h’ option.

6.2.1. flx-info

The flx-info application is a command line tool which can print to the screen a range of monitoring
and configuration information for you FELIX card(s). By default you will be presented with some
system version and health status, as well as a basic link description. To access this default printout
run the following command:

flx-info

This will provide output similar to that which is presented in Figure 34, including general
information such as the firmware revision 'SVN version' and link mode 'GBT or FULL'. To produce
more verbose output pass the tool the -v or -vv option.

Figure 34. Default output of flx-info (assuming a VC-709 running GBT-mode firmware)

Beyond this basic output, flx-info also makes it possible to read many FELIX configuration registers
in detail. For a complete list of these options run flx-info with the ‘-h’ flag. This will produce output
shown below.

List of all flx-info features

Usage: flx-info [OPTIONS] [COMMAND] [CMD ARGUMENTS]
Displays information about a FLX device.

Options:
 -d NUMBER Use card indicated by NUMBER. Default: 0.
 -v Verbose mode.
 -D level Configure debug output at API level. 0=disabled, 5,
10, 20 progressively more verbose output. Default: 0.
 -h Display help.
 -V Display the version number
Commands:
 GBT Shows GBT channel alignment status.
 FMC_TEMP_SENSOR Display FMC temperature from TC74 sensor.
 ADN2814 Display ADN2814 register 0x4.
 CXP Display temperature and voltage from CXP1 and CXP2
 SFP Display information from Small Form Factor Pluggable
transceivers
 DDR3 Display values from DDR3 RAM memory
 ID_EEPROM Display the first 32 bytes of the eeprom memory
 SI5324 Display SI5324 status
 SI5345 Display SI5345 status
 LMK03200 Display LMK03200 status
 ICS8N4Q Display ICS8N4Q status
 EGROUP [channel] [RAW] Display values from EGROUP registers:
 If no channel is specified, display all
available.
 Using Hexadecimal notation if RAW is specified.
 ALL Display ALL information.

6.2.2. flx-config

The flx-config tool allows users to modify specific FELIX control and configuration registers from
the command line. This should normally only be done on advice from a member of the FELIX
development team. Other features are also available, but these should be considered for experts
only unless advised otherwise by the development team. The two primary features users will use
will be the 'list' and 'set' features. List mode will dump the values of all FELIX registers to the
screen. This will be a large amount of output, but can be searched with e.g. grep for the desired
information. To run list mode execute the following command:

flx-config list

To change a given register value use the 'set' feature as follows:

flx-config set REGNAME=<new val>

In this case REGNAME corresponds to the register to be changed and <_new val>_ to the new value
be stored. Once set you can use list mode to confirm the change.

6.2.3. flx-init

This tool has the ability to reset the GBT wrapper and transceiver, and should be performed every
time the FPGA is reprogrammed (including in case of loss of power). The tool should also be run if
the GBT fibres are disconnected at any point before attempting to transfer data once again.

To run the basic initialisation issue the following command:

flx-init

If you wish to use more features (if instructed by a member of the development team), consult the
help dialog as presented below

List of all flx-init features

Usage: flx-init [OPTIONS]
Initializes a FLX device.

General options:
 -d NUMBER Use card indicated by NUMBER. Default: 0.
 -h Display help.
 -D level Configure debug output at API level. 0=disabled, 5, 10,
20 progressively more verbose output. Default: 0.
 -v Display verbose output.
 -vv Super verbose mode.
 -V Display the version number
GBT calibration options:
 -s SOFT|FIRM Use SOFTWARE (SOFT) or FIRMWARE (FSM) alignment.
Default: SOFT.
 -a ONE|CONTIUNOUS Select alignment type. Default: ONE.
 -t FEC|WideBus Select transmission mode. Default: FEC.
 -e YES|NO Use the descrambler output value. Default: NO.
 -f FILENAME Specify which file will be used to calibrate the delay.
Default: ../flx_propagation_delay.conf)
TTC calibration options:
 -G NUMBER Get and display the status of a SI53xx
 Legal values are:
 1 = SI5324
 2 = SI5345
 -C Set the registers of the ICS 8N4Q001L
 -X filename Set a clock to a given frequency using the dangerous
mode
 -T mode Set a clock to a given frequency
 Legal values for mode are:
 1 = (SI5324 only on FLX-709) 240 MHz
 2 = TTCfx-v3 or BNL-711/712 (SI5345) 240 MHz
 3 = Si5345-RevD-711_4008_BNL711_8x240
 -I INSEL To be used in combination with -T or -X. The value
given will be written into register HK_CTRL_FMC_SI5345_INSEL
 Legal values are:
 FLX-709: 0-->FPGA (LA01), 1-->FMC OSC, 2-->FPGA (LA18)

6.2.4. flx-reset

The flx-reset application makes it possible to selectively reset components of the FELIX firmware,
or the complete board, as needed given the situation. This should only be done if advised by a
FELIX development team member. To see the list of available parameters please consult the help
output presented below.

List of all flx-reset features

Usage: flx-reset [OPTIONS]
Tool to reset different aspects from the card.

Commands:
Options:
 FLUSH Flushes (resets) the main output FIFO toward Wupper.
 RESET Resets the whole Wupper_core.
 REGISTERS_RESET Resets the registers to default values.
 SOFT_RESET Global application soft reset.
 ADN2814 Reset the ADN2814.
 ALL Do everything.
Options:
 -d NUMBER Use card indicated by NUMBER. Default: 0.
 -D level Configure debug output at API level. 0=disabled, 5, 10, 20
progressively more verbose output. Default: 0.
 -h Display help.
 -V Display the version number

To reset a given component simply pass the name to flx-reset on the command line:

flx-reset COMP_NAME

6.2.5. flx-monitor

The flx-monitor application is a new application dedicated to presenting status information for
LTC2991-monitored components[ltc2991] aboard BNL-711/712 cards (and thus will not work with a
VC-709). To see the list of available parameters please consult the help output as presented below.


This tool is currently only available in the developer build, but is documented here
for any users already working with it. It will be available in the user release from
version 3.9.2 (if built) and 4.X onwards.

List of all flx-monitor features

Usage: flx-monitor [OPTIONS]
Read and decode data of the FPGA, LTC2991 and MiniPod devices on a FLX-711 or FLX-712

General options:
 -d NUMBER Use card indicated by NUMBER. Default: 0.
 -D level Configure debug output at API level. 0=disabled, 5, 10,
20 progressively more verbose output. Default: 0.
 -h Display help.
 -V Display the version number
Commands:
 [none] Shows status of the FPGA
 LTC Shows status of the LTC2991
 POD Shows status of the MiniPODs
 ALL Shows all status information

6.3. Dataflow from Front-end via FELIX to FELIX host
PC

6.3.1. fdaq

Fdaq is the primary tool for testing the FELIX data acquisition path. The tool can run in multiple
modes, from waiting for input for FELIX from a front-end source to using one of the two internal
data generators on the card. In both modes fdaq will measure and report throughput for the
duration of the test. Data can be dumped to a file or discarded upon receipt. If running in discard
mode fdaq will check the integrity of the data blocks and chunks it receives (e.g. block headers and
chunk sizes). If an error is found the test will, by default, stop and fdaq will report on the first
detected error. However, if the '-D' option is used the run will continue with a report printed on all
errors received.


This section assumes that your E-links and data generators are configured
properly as specified in Section 6.1. In this section we will cover various scenarios,
but a list of all options can be found in the help output, shown below.


In full mode it will likely only be possible to run fdaq or a couple of seconds as you
will rapidly exceed the maximum rate at which you can write to disc, which will
then cause the application to abort to avoid buffer overflow. For reference, for a
typical SSD this limit is approximately \~300MB/s.

List of all fdaq features

fdaq version 18070500
Stream data from FLX-card to file(s). Whenever the set maximum file size
is exceeded a new file is created. Every second a status line
with data rates, data totals and memory buffer status is displayed.
(NB: if no filename is provided all data is consumed while checking the data blocks,
 i.e. blockheader and trailers; use -D to *not* terminate after an error is
detected.)

Usage: fdaq [-h|V] [-D] [-d <cardnr>] [-b <size>] [-e|E] [-f <size>]
 [-i <dma>] [-I] [-r <runnr>] [-t <secs>] [-R] [-X] [<filename-base>]
 -h : Show this help text.
 -V : Show version.
 -D : Debug mode on, i.e. output additional info.
 -d <cardnr>: FLX-card to use (default: 0).
 -b <size> : DMA (cmem_rcc) memory buffer size to use, in MB (default 1024, max
4096).
 -e|E : Enable FLX-card data generator, internal (e) or
 external (E) (default: false).
 -f <size> : Maximum file size, in MB (default 1024, max 4096).
 -i <dma> : FLX-card DMA controller to use (default: 0).
 -I : use interrupt to receive data (default: polling)
 -r <runnr> : Run number to use in file names (default: none).
 -R : Do NOT flush and reset DMA nor issue a 'soft reset'.
 -t <secs> : Number of seconds to do acquisition (default: 1).
 -T : Do NOT add datetime+counter as part of file names.
 -X : Stream data from individual e-links to separate files (default: false).
 <filename-base>: Name to be combined with datetime+runnumber+counter of files created

Running DAQ Test with External Data Source

The most simple configuration for fdaq to run in is to listen for any data coming into FELIX over the
GBT/FULL mode link and measure the bandwidth as this arrives at the host. In this mode the data is
discarded. The only parameter a user must define is the time in seconds for which fdaq should
perform the test. The default time is 1 second. The syntax is as follows:

fdaq -t <time>

For a three second test the output will resemble Figure 35.

Figure 35. Output from fdaq test

If you would like to dump your data to a file for analysis simply specify a filename after the other

command line parameters:

fdaq -t <time> testfile

This will run as above and produce a time-stamped .dat file in the directory you are running with a
name of the format 'testfile-<timestamp>.dat'. You can specify the maximum size for the file with
the '-f' option specifying a size in megabytes (default 1024, max 4096). If you would like to split the
input from multiple E-links into different files use the '-X' option. The E-link number will be added
to the filename.

Running DAQ Test with Internal Data Generation

A facility to use both data generators within the FELIX card for the purposes of testing is provided
by fdaq. The 'internal' generator is connected directly to the data output path of the card (i.e. after
input side of the GBT link interface). Data from this generator therefore passes through the full
FELIX firmware data path with the exception of the link layer itself. The 'external' data generator is
connected to the output path before the GBT layer. This means it can be configured to send data out
of a GBT link. If some loopback fibres are connected it is therefore possible to send data out of one
GBT transceiver and into another on the same FELIX and therefore test more of the data path. To
access these options in fdaq one must use the '-e' option for internal data generation and '-E' for
external data generation. The output from fdaq will be the same as shown for the external source
tests. An example is shown in Figure 36.

Figure 36. Output from fdaq test with internal data generation

6.4. Dataflow from FELIX Host PC to Front-end Systems
via FELIX

6.4.1. fupload

The FELIX software suite makes it possible to transfer data from the FELIX host PC via the FELIX
card to the front-end across a GBT link. This is done via the 'fupload' tool. With this tool it is possible
to transfer data either from a user defined file, or from the FELIX data generators, to a specified E-
link across a GBT connection. The full range of features of the tool can be seen in the help text, as
presented below.


This tool works with FULL mode firmware versions, but uses a GBT link up to the
front-end.

List of all fupload features

fupload version 18080100

Upload data (test data or from file) to the given FLX-card e-link.
The e-link number is provided as a (hex) number directly (-e option),
as a set of -G/g/p options, or as a set of -G/I/w options, unless option -R is given.
Checks whether the e-link is valid and configured on the selected FLX-card,
unless option -c is given.

In ASCII data files one line is one data packet (hexadecimal byte values separated by
spaces),
while lines starting with certain characters may be used to:
 # insert a comment line
 + insert a packet of the given length containing bytes of the given byte value
 & insert a configurable delay in microseconds between two packets
 > change the e-link number to upload to

Usage: fupload [-h|V] [-D] [-d <cardnr>] [-b <size>] [-c] (-e <elink>
 | (-G <gbt> (-g <group> -p <path>) | (-I <index> -w <width>)) [-i
<dma>]
 [-s <bytes>] [-P <patt>] [-f <speed>] [-R] [-t <secs>] [-x <size>]
[<filename>]
 -h : Show this help text.
 -V : Show version.
 -b <size> : DMA (cmem_rcc) memory buffer size to use, in MB (default 128, max
4096).
 -B : Contents of <filename> is read as binary data (default: ASCII).
 -c : Do not check whether e-link is configured on FLX-card.
 -d <cardnr>: FLX-card to use (default: 0).
 -D : Debug mode on, i.e. display blocks being uploaded.
 -f <speed> : Speed up default upload rate of about 8MB/s by factor <speed>
(default:1)
 -i <dma> : FLX-card DMA controller to use (default: 1).
 -P <patt> : Test data pattern: 0=incr, 1=0x55/0xAA, 2=0xFF, 3=incr-per-chunk
(default:0).
 -r <repeat>: Test data repeat count: upload <repeat>*<bytes> bytes of data (default:
30).
 -R : Upload data raw, not as CR from-host datapackets with header.
 -s <bytes> : Number of bytes per chunk to upload (default:32).
 -t <secs> : Number of seconds for DMA time-out or wait until DMA done when 0
(default: 0).
 -x <size> : Size of individual DMA transfers, in KByte (default:1).

Options to define the e-link to use:
 -e <elink> : E-link number (hex) or use -G/g/p or -G/I/w options.
 -E <elink> : an optional 2nd E-link number to upload to
 (alternating with the first given E-link number).
 -G <gbt> : GBT-link number.
 -g <group> : Group number.
 -p <path> : E-path number.
 -I <index> : Index of first bit of e-link in GBT frame.
 -w <width> : e-link width in bits (2, 4, 8 or 16).

 <filename> : Name of file with data to upload (ASCII or binary),

 or test pattern data if no name is given.

6.5. FELIX Configuration Tools

6.5.1. felink

The felink tool is a link descriptor interpreter which allows you to work out the E-link ID for a given
link given GBT/E-group/E-path (or vice versa). This is intended to be used in conjunction with e.g.
fupload to allow users to work out which link ID they should target with their data. Some examples
of possible uses will be given below, but you can find all possible options in the help text, as shown
below.

List of all felink features

felink version 18080700
Convert a given E-link number into GBT, egroup and epath numbers
as well as GBT and bit-index and width, or the other way around.
The E-link number is provided as a (hex) number directly (-e option),
as a set of -G/g/p options, or as a set of -G/I/w options.
Optionally checks if this E-link is valid and configured on a given FLX-card (option
-d),
in either to- or from-host direction.
Use option -l to display a list of valid E-link numbers,
optionally in combination with -G or -g options to restrict the list
to a particular GBT-link and/or egroup.
(Note that E-link numbers are also indicated in the elinkconfig GUI).

Usage: felink [-h|V] [-d <cardnr>] (-e <elink>
 | (-G <gbt> (-g <group> -p <path>) | (-I <index> -w <width>))
 -h : Show this help text.
 -V : Show version.
 -d <cardnr>: FLX-card to use (default: 0).
 -e <elink> : E-link number (hex) or use -G/g/p or -G/I/w options.
 -G <gbt> : GBT-link number.
 -g <group> : Group number.
 -l : Show a list of valid E-link numbers (use options -G, -g, -p to restrict
the list).
 -p <path> : E-path number.
 -I <index> : Index of first bit of e-link in GBT frame.
 -w <width> : E-link width in bits (2, 4, 8 or 16).

A list of all valid E-links and coordinates can be seen with list mode, available with the following
syntax:

felink -l

Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width

Consider the example where a user wishes to know the E-link ID for a link connected to GBT link 2,

within E-group 3 and E-path 4. This can be done as follows:

felink -G <GBT ID> -g <egroup ID> -p <epath ID>

Filling these in gives results as in Figure 37, from which we can see that the E-link ID is 0x9C. The
results also show alternative coordinates for the E-link in terms of GBT bit address and width.

Figure 37. Result of E-link ID calculation by GBT/E-Group/E-path

It is also possible to search for link ID using the GBT ID, bit address of the start of the E-link in the
GBT frame and E-link width. The syntax is as follows, noting that the index must correspond to a
valid E-link start point.

felink -G <GBT ID> -I <bit address> -w <E-link width>

If a user then wants to search for GBT 1, bit 4 and width 2 the results will be as per Figure 38. This
identifies the E-link in question as 0x42.

Figure 38. Result of E-link ID calculation by GBT/bit address/width

These calculations can also be done in reverse, to yield the coordinates of a given known E-link ID.
For this use the following syntax:

felink -e <E-link ID in hex>

If as user then wants to know the coordinates of e.g. E-link 0x55 the tool can be used to give the
results in Figure 39. From this it can be seen that the GBT ID is 1, the E-group ID 2 and the E-path ID
5. An estimate for the bit address and width is also displayed.

Figure 39. Result of E-link coordinate search for a known E-link ID

6.5.2. fereverse

 this tool replaces 'feswap', which is now deprecated.

The fereverse tool makes it possible to swap the bit ordering of data propagating through a
designated E-links (or set of links). For more details consult the help text, as shown below.

List of all fereverse features

fereverse version 17121100
Enable, disable or display the bit-order reversal feature for e-links,
a setting per e-path (e-link).
Without keyword '(re)set' the current setting is displayed.

Usage: fereverse [-h|V] [-d <cardnr>] [-G <gbt> [-g <group>] [-p <path>]] [-e <elink>]
[-f] [-t] [set|reset]
 -h : Show this help text.
 -V : Show version.
 -d <cardnr>: FLX-card to use (default: 0).
 -G <gbt> : GBT-link number
 -g <group> : Group number (default: all groups).
 -p <path> : E-path number (default: all paths).
 -e <elink> : E-link number (hex) or use -G/g/p options.
 -f : Configure FromHost only.
 -t : Configure ToHost only.
 set : Enable e-link bit-reversal.
 reset : Disable e-link bit-reversal.

In order to use the tool to toggle the bits for a given E-link use the following syntax:

fereverse -d <FELIX ID> -G <GBT ID> -g <E-group ID> -p 1 <set/reset>)

In this case the 'set' option indicates the bits should be switched and 'reset' indicates deactivation of
the switch. It is also possible to pass the E-link ID directly using the ‘-e’ option. If neither set or reset
are specified the tool will simply report back the current status. Examples of both cases can be
found in Figure 40 and Figure 41.

Figure 40. Using fereverse to enable endianness swap by specifying GBT/E-group and E-path.

Figure 41. Using fereverse to disable endianness swap with E-link ID.

6.5.3. fgpolarity

The fgpolarity tool makes it possible for FELIX to adapt to the bit polarity of data produced by front-
end systems and sent via a Versatile Link[VersatileLinkWebsite] transceiver. The transceiver, by
design, swaps the polarity of incoming and outgoing bits (i.e. 0 becomes 1 and vice-versa). Some
front-end systems may already account for the swap in their design, but in order to send and
receive packets to and from those who haven’t this tool configures FELIX to automatically swap the
bits for any designated GBT links (and therefore all E-links within). For more details consult the

help text, as shown below.

List of all fgpolarity features

fgpolarity version 17060900
Configure or display the GBT transceivers RX and TX polarity.
Usage: fgpolarity [-h|V] [-d <cardnr>] [-G <gbt>] [set|reset]
 -h : Show this help text.
 -V : Show version.
 -d <cardnr>: FLX-card to use (default: 0).
 -G <gbt> : GBT-link number.
 -r : Configure RX only.
 -t : Configure TX only.
 set : Set reverse polarity for given GBT transceiver(s).
 reset : Set default polarity for given GBT transceiver(s).
 (without keyword '(re)set' the current setting is displayed)

In order to use the tool to toggle the polarity of a particular GBT link use the following syntax:

fgpolarity -d <FELIX ID> -G <GBT ID> <set/reset>)

In this case the 'set' option indicates the activation of a polarity switch and 'reset' indicates
deactivation of the switch. It is also possible to modify the Tx and Rx directions separately using the
‘-r’ and ‘-r’ flags accordingly. By default both will be changed. The expected output from the tool can
be found in Figure 42 and Figure 43.

Figure 42. Using fgpolarity to swap bit polarity.

Figure 43. Using fgpolarity to disable bit polarity swap.

6.5.4. feconf

feconf is a command line tool providing some of the functionality of elinkconfig. With this tool it is
possible to upload a pre-defined E-link configuration file (.elc format) to a FELIX card. Alongside the
basic configuration, feconf also makes it possible to configure the FELIX firmware data generators.
For more information on the meaning of each parameter, consult Section 6.1 on elinkconfig. For a
full list of commands consult the help text, as shown below.

List of all feconf features

feconf version 18061900
Upload an e-link configuration from file (generated by elinkconfig) to the given FLX-
card,
and generate and upload matching emulator data contents.
Usage: feconf [-h|V] [-d <cardnr>] [-s <chunksz>] [-w] [-R] [-I <idles>] <filename>
 -h : Show this help text.
 -V : Show version.
 -d <cardnr> : FLX-card to use (default: 0).
 -L : 8b10b-words LSB first (GBT only; default: MSB first).
 -n : Don't write the configuration, just read and display some info.
 -R : Generate emulator data chunks with 'random' size.
 -s <chunksz>: Emulator data chunksize to generate (default: 32).
 -w : Generate emulator data chunksize dependent on e-link width (default:
false).
 -I <idles> : The number of idles between generated emulator data chunks (default:
8).
 <filename> : Name of .elc file with FLX-card e-link configuration.

6.5.5. femu

The femu tool gives users command line control over the FELIX firmware data generators, both in
the from and to host directions. The full range of features of the tool can be seen in the help text, as
presented in [fig:femu].

List of all femu features

femu version 17091300
Show or configure 'FanOut-Select' registers and start/stop emulator.
Usage: femu [-h|V] [-d <cardnr>] [-e|E|n] [-l]
 -h : Show this help text.
 -V : Show version.
 -d <cardnr>: FLX-card to use (default: 0).
 -e|E|n : Enable FLX-card data emulator, internal (e) or external (E) or disable
emulator (n).
 When no option is given the current status is displayed.
 -f : When disabling emulator set TOHOST_FANOUT to emulator (default: to
external).
 -l : 'Unlock' FanOut-Select registers.
 -L : 'Lock' FanOut-Select registers.

6.5.6. feto

The feto tool gives users command line control over the FELIX block timeout at the level down to
individual E-links. If enabled FELIX will time out incoming data blocks taking longer than a
designated period to arrive and attach a timeout trailer to the block. The block will then be
transferred to the host as normal. The full range of features of the tool can be seen in the help text,
as presented below.

List of all feto features

feto version 17121300
Enable, disable or display the instant time-out setting,
a setting per e-path (e-link), or the so-called global time-out
and associated time-out counter (number of clocks until time-out),
or the TTC time-out and associated counter.
Without keyword '(re)set' the current setting of the requested
(group of) time-outs is displayed.

Usage: feto [-h|V] [-d <cardnr>] [-G <gbt> [-g <group>] [-p <path>]]
 [-e <elink>] [-T] [set|reset] [<globcntr>]
 -h : Show this help text.
 -V : Show version.
 -d <cardnr>: FLX-card to use (default: 0).
 -G <gbt> : GBT-link number.
 -g <group> : Group number (default: all groups).
 -p <path> : E-path number (default: all paths).
 -e <elink> : E-link number (hex) or use -G/g/p options.
 -T : Read or configure TTC time-out.
 set : Enable time-out.
 reset : Disable time-out.
 <globcntr> : Global or TTC time-out counter value to set.

6.5.7. fflash

The fflash tool is designed specifically for programming FLASH memory modules aboard BNL-
711/712 from a .mcs formatted firmware image. Note that at this point, any reprogramming of the
fpga from flash will require either a reboot or PCIe hotplug operation (see Section 4.2.6.1 for details)
to return the board to normal operation with the new firmware image in place. A full listing of
commands is available below.

List of all fflash features

fflash version 18082400
Tool for programming, verifying, erasing or dumping firmware images
in FLX-711/712 flash memory, or loading the selected firmware into the FLX-card.
Usage: fflash [-h|V] [-d <cardnr>] -f <flashnr> [-E] [-D] [-F]
 [[-L|I] [-b <busnr>] [-s <saddr>] [-u <uaddr>]] [<filename>] [prog]
 -h : Show this help text.
 -V : Show version.
 -d <cardnr> : FLX-card to use (default: 0).
 -D : Read and display contents of the selected flash partition or flash
file.
 -E : Erase the selected flash partition.
 -f <flashnr>: Flash memory segment partition [0..3] to dump, to erase,
 to verify or to program (no default).
 -F : Use the (slow) word-by-word instead of (fast) page programming method.
 -i : Read the flash ID only, then exit.
 -I : Generate an INIT_B pulse on the FLX-card (to reset flash devices).
 -L : Load firmware from the given flash partition into to card.
 -b <busnr> : I2C-bus number (default=0, in combination with -L/I options)
 -s <addr> : I2C-switch I2C-address (hex, default=0x70, in combination with -L/I
options).
 -u <addr> : uC I2C-address (hex, default=0x68, in combination with -L/I options).
 <filename> : Name of MCS file to dump, verify or program.
 prog : Literal text string to initiate flash programming
 (or else flash verification will take place).
Examples:

Read and dump to screen flash memory image partition #2:
 fflash -f 2 -D
Erase flash memory partition #2:
 fflash -f 2 -E
Verify flash memory partition #2 against mcs file <filename>:
 fflash -f 2 <filename>
Program flash memory partition #2 with the contents of mcs file <filename>:
 fflash -f 2 <filename> prog
Load flash memory image partition #2 into the card:
 fflash -f 2 -L
Extra:
Read flash ID only:
 fflash -f 0 -i
Read and dump to screen the memory image in mcs file <filename>:
 fflash -D <filename>

6.6. General Debugging Tools

6.6.1. fcheck

fcheck is a debugging tool which can analyse the .dat files produced by the fdaq tool and check for

data integrity issues. The tool will perform checks on a file to a specified degree of severity. For
more details on each level consult [fig:fcheck_help]. As well as running checks, the tool can also be
used to dump selected data blocks to screen, either split into data chunks or as raw data, to
facilitate closer inspection of any issues found. To run the check, specify the file name and check
detail level as follows:

fcheck -B <severity> testfile.dat

A full list of features available with fcheck can be seen in the help text, as shown below.

List of all fcheck features

fcheck version 18100100
Usage: fcheck [-h|V] [-A] [-B <id>] [-c|C|D] [-e <elink>] [-F <blocks>] [-S <blocks>]
 [-t|T] [-w] [-0] <filename>
 -h : Show this help text.
 -V : Show version.
 -A : Interpret chunks that could be GBT-SCA frames.
 -B <id> : Do a check on (emulator) data blocks according to <id>,
 and display a data summary (default: 2).
 0: Check for proper block headers at 1k boundaries,
 for each block 1 line of output is produced.
 1: Same as 0, but only when an error is found a line is output.
 2: Full integrity checking of blocks, starting from
 the block trailer going through all chunks.
 3: Same as 2, including a check on expected emulator data payload,
 which must constitute an incrementing byte.
 4: Same as 3, but inconsistent maximum values of L1ID are not reported.
 -c : Display data 'raw' datablocks (default: chunk data) (option -F)
 -C : Display chunk data bytes only, nothing else.
 -D : Display only whole data chunks, i.e. the user's data frames.
 -e <elink> : E-link number (hex) to filter for block check or block display.
 -F <blocks>: Dump <blocks> 1K data blocks to display (overrules data check option
-B).
 Chunk types: BOTH="<<", FIRST="++", LAST="&&", MIDDLE="==",
TIMEOUT="]]", NULL="@@",
 OUTOFBAND="##" and "TE" for chunk truncation/error.
 -S <blocks>: Skip <blocks> of data blocks before starting check or display.
 -t : Do NOT report chunk truncation/error/CRCerror.
 -T : Do NOT report chunk CRCerror.
 -w : Instead of displaying, write (binary) chunkdata to file (dataout.dat).
 -0 : Do NOT display time-out chunkdata bytes (zeroes).
 <filename> : Name of file containing data to check or display.

6.6.2. fedump

The fedump tool is designed to make it possible to dump data arriving at FELIX to the screen for
debugging purposes. Users of the tool can filter the data stream by E-link ID and FELIX card
number, as well as having the option of displaying the data in raw format. More advanced options
are available, but should only be used in consultation with the FELIX developers. For more details

consult the help text, as shown below.

List of all fedump features

fedump version 17091900
Dump selected E-link chunk data (optionally block-by-block) received from an FLX-card
to screen.
Chunk types are delimited by:
BOTH="<<", FIRST="++", LAST="&&", MIDDLE="==", TIMEOUT="]]", NULL="@@", OUTOFBAND="##"
Usage:
 fedump [-h|V] [-A] [-c|D] [-d <cardnr>] [-e <elink>] [-i <dma>] [-I] [-0]
 -h : Show this help text.
 -V : Show version.
 -A : Interpret chunks that could be GBT-SCA frames.
 -c : Display data 'raw', block-by-block (default: chunk data).
 -d <cardnr>: FLX-card to use (default: 0).
 -D : Display only whole data chunks, i.e. the user's data frames.
 -e <elink> : E-link number (hex) to filter out for display (default: no filter).
 -i <dma> : FLX-card DMA controller to use (default: 0).
 -I : Use interrupt to receive data (default: polling).
 -0 : Do not display time-out chunkdata (zeroes).

6.6.3. fec

The fec tool is designed for the communication with a GBT-SCA chip present on a remote hardware
system connected to FELIX via GBT links. Commands are read and written using the EC link
component of the GBT protocol. The tool makes it possible to send pre-programmed signals to the
GBT-SCA, as well as custom command strings. For a full list of commands consult the help text, as
shown in [fig:fec_help].

List of all fec features

fec version 18101201
*** UNDER DEVELOPMENT ***
Tool to upload various commands to a GBT-SCA chip via any 2-bit wide, HDLC encoded e-
link
including a GBT link's EC channel.
Receive (and display) GBT-SCA replies using option -Z, or use fedump or fdaq.
Usage:
 fec [-h|V] [-d <cardnr>] [-i <dma>] [-I] [-G <gbt>] [-g <group>] [-p <path>] [-t
<ms>] [-x <par>] [-A] [-C] [-R] [-T] [-Z] [<ops>]
 -h : Show this help text.
 -V : Show version.
 -d <cardnr>: FLX-card to use (default: 0).
 -i <dma> : FLX-card DMA controller to use (default: 1).
 -I : use interrupt to receive data (default: polling)
 -G <gbt> : GBT-link number (default: 0).
 -g <group> : Group number (default matches GBT EC 'group' = 7).
 -p <path> : E-path number (default matches GBT EC 'path' = 7).
 -r <repeat>: Number of GPIO/ADC/DAC operations to perform (default: 1).
 -A : Use SCA-V1 ADC commands (default: SCA-V2 ADC).
 -C : Send GBT-SCA connect (HDLC control).
 -R : Send GBT-SCA reset (HDLC control).
 -T : Send GBT-SCA test (HDLC control).
 -t <ms> : Time between some of the ops, in ms (default: 100).
 -x <par> : Parameter to use in operations, e.g. GPIO number, ADC or DAC channel
(default: 0).
 -Y <seq> : Use <seq> as first HDLC 'receive sequence number'.
 (to keep receiving side happy in consecutive calls)
 -Z : Do not receive and display the GBT-SCA replies.
 <ops> : String of chars indicating which operation(s) to perform:
 o=GPIO-out, i=GPIO-in, a=ADC, d=DAC, I=I2C (no-string=default: none).
Examples:
Blink VLDB (connected to GBT link #3) LED connected to GPIO #18
20 times with a rate of 5Hz (100ms ON, 100ms OFF):
 fec -G 3 -t 100 -r 20 -x 18 o
Read GPIO inputs (GBT-SCA on GBT-link #3's EC-channel) 20 times with a rate of 10Hz:
 fec -G 3 -t 100 -r 20 i

6.7. Remote Hardware Command and Configuration
Tools

6.7.1. fic(e)

The fic tool is designed for communication with a GBTx chip present on a remote system connected
to FELIX via GBT links. Commands are read and written using the IC link component of the GBT
protocol. With this tool it is possible to read and write data to a specific GBTx address for the
propagation of command and configuration information as part of debugging or preparation of

front-end components for a data taking session. The fice tool is functionally identical to the fic tool,
but uses a dedicated virtual E-link to transfer data to FELIX via DMA. Users can use both tools
interchangeably, but fic will eventually be withdrawn.

For a full list of commands consult the help text, as shown below.

List of all fic(e) features

fic version 17082800
(NB: this tool uses FLX-card register-based IC-channel access,
 which will be replaced by access through a virtual E-link:
 in that case use the 'fice' tool instead.)
Tool to read or write GBTX registers through the IC-channel of an FLX-card GBT link:
read or write data byte from or to the given GBTX register address
at the receiving end of the given FLX GBT-link or
write to multiple consecutive GBTX registers with data read from a file.
Provide a file name *or* option -a with an address and an optional
additional byte value to read or write a single register.
Without option -a or file name all registers are read out and displayed
either in one IC read operation or one-by-one (option -o).
Usage:
 fic [-h|V] [-d <cardnr>] [-G <gbt>] [-I <i2c>] [-T] [-a <addr> [<byte>] | <filename>]
 -h : Show this help text.
 -V : Show version.
 -a <addr> : GBTX register address (hex) to read or write.
 -d <cardnr>: FLX-card to use (default: 0).
 -G <gbt> : GBT-link number.
 -I <i2c> : GBTX I2C address.
 -o : When reading all registers, do it one-by-one (default: one multi-reg
read op).
 -T : Display time the operation took (in us).
 <byte> : Byte value (hex) to write to GBTX register <addr> (option -a).
 <filename> : Name of file with GBTX register data to upload.
Examples:
 fic -G 1 -I 3
 fic -G 1 -I 3 gbtx-config.txt
 fic -G 1 -I 3 -a 34
 fic -G 1 -I 3 -a 34 56

6.7.2. fgbtxconf

The fgbtxconf tool makes it possible to read and write GBTx registers accessible via the chip’s I2C
port, accessed through a GBT-SCA chip. The functionality of this tool is similar to fic(e). For a full
description please consult the help output below:

List of all fgbtxconf features

fgbtxconf version 17111700
Tool to read or write GBTX registers via an I2C-channel of a GBT-SCA chip,
connected to any FLX-card GBT (2-bit HDLC) E-link:
read or write byte from or to the given GBTX register address or
write to multiple consecutive GBTX registers with the contents of a file.
(ASCII file: 1 byte value (hex) per line,
 e.g. TXT file generated by the GBTX Programmer tool).
Provide a file name *or* use option -a with an optional additional byte value
to read or write a single GBTX register or without option -a to read all registers.
Usage:
 fgbtxconf [-h|V] [-d <cardnr>] [-G <gbt> [-g <group> -p <path>]] [-e <elink>] [-R] [-
r] [-W]
 -C <ichan> -I <iaddr> -a <addr> [<byte>] | <filename>
 -h : Show this help text.
 -V : Show version.
 -d <cardnr>: FLX-card to use (default: 0).
 -G <gbt> : GBT-link number.
 -g <group> : Group number (default: 7=EC).
 -p <path> : E-path number (default: 7=EC).
 -e <elink> : E-link number (hex) or use -G/g/p options.
 -R : Reset GBT-SCA.
 -r : Do not receive and display the GBT-SCA replies.
 -W : Read writable registers only (default: all).
 -C <ichan> : GBT-SCA I2C channel number.
 -I <iaddr> : GBTX I2C address (hex).
 -a <addr> : GBTX register number (decimal).
 <byte> : Byte value (hex) to write to GBTX register <addr> (option -a).
 <filename> : Name of file with GBTX register data to write to consecutive registers.
=> Examples:
Read all registers of GBTX (I2C address 1) connected to GBT-SCA I2C-channel 0,
GBT-SCA connected to FLX-card GBT link 3 EC-link:
 fgbtxconf -G 3 -C 0 -I 1
Read GBTX register 32:
 fgbtxconf -G 3 -C 0 -I 1 -a 32
Write 0xA5 to GBTX register 32:
 fgbtxconf -G 3 -C 0 -I 1 -a 32 A5
Write contents of GBTX-conf.txt to GBTX registers:
 fgbtxconf -G 3 -C 0 -I 1 GBTX-conf.txt

Chapter 7. Felixcore Application and NetIO

7.1. Operational Principles
The FELIX core application (called felixcore) is the central process of a FELIX system. The user
interacts with the felixcore application via network endpoints to receive data from E-links or to
send data to E-links. Systems such as software RODs, DCS, calibration and monitoring systems all
connect with FELIX via felixcore.

Felixcore also supports monitoring of operational data via a web front-end and publishing of E-link
information via the FELIX bus system.

Figure 44. The architecture of the FELIX core application.

Figure 44 shows a diagram of the architecture of the FELIX core application. In the case of a system
with multiple FLX cards, one application can be run per card.

7.2. Configuration
The configuration parameters of the felixcore application are listed in Command line interface
options for the felixcore application. Each option can also be set in the configuration file. The
option key in that case is the long option without the leading dashes.. The parameters can be passed
to the application either on the command line or as part of a file.

Command line interface options for the felixcore application. Each option can also be set in the
configuration file. The option key in that case is the long option without the leading dashes.

felixcore - FELIX Core Application

Usage: felixcore [(--verbose | --quiet) --device N... options]

 Run with card: 'felixcore'
 Run with file: 'felixcore -f <file> --notoflx --nobusy'
 Run with data generator: 'felixcore -g --notoflx --nobusy'

All Options:

General Options:
 -t, --threads N Run with the specified number of threads
[default: 1]
 -p, --port N Receive daq data starting from port [default:
12350]
 -r, --recv-port N Receive slow control data starting from port
[default: 12340]
 -P, --busy-port N Receive busy control signals on this port
[default: 12330]
 -B, --netio-backend (posix|fi-verbs) Use the given NetIO backend [default: posix]
 -l, --logfile <file> Write logs to the given filename
 -b, --buffer N Free Buffer size in kBlocks per thread
[default: 2000]
 -g, --data-generator Use internal data generator
 --ttc-generator N Use internal ttc generator and elink #,
default is off [default: -1]
 --felix-id <id> Elink offset for this FelixCore [default: 0]
 --data-interface <iface> Interface to publish data [default: eth0]
 --monitoring-interface <iface> Interface to publish monitoring information
[default: eth0]
 --noweb Disable web server
 -w, --web-port N Port for webserver [default: 8080]

Commandline Options:
 -h, --help Display this help
 -V, --version Display version
 -v, --verbose Switch logging on, level = debug
 -q, --quiet Switch logging off, level = warning
 -c, --config <file> Load configuration from the specified YAML
file
 --config-write <file> Store configuration in the specified YAML file
 -f, --file <file> Use the given filename as input

Card Options:
 -d, --device N... Use only listed devices to look for cards
 -m, --memory N Allocate CMEM memory in Gbyte [default: 1]
 --polling Use polling
 --poll-time T Poll time in micro-seconds [default: 50000]
 --dma D Use toHost dma channel [default: 0]
 --toflx-dma D Use toFlx dma channel [default: 1]
 --elinks <elinkrange> Elink numbers/number range, comma separated
for instance
 --notoflx Do not start the To-FLX thread(s)
 --nobusy Do not start the Busy thread(s)

Data Generator Options:
 --fixed-chunks Use fixed chunk size
 --chunk-size-fixed N Fixed size of chunks [default: 1018]
 --rate-control-bool Use rate control
 --chunk-size-min N Minimum size of chunks [default: 128]
 --chunk-size-max N Maximum size of chunks [default: 4096]

 --e-link-min N Minimum number of elinks [default: 50]
 --e-link-max N Maximum number of elinks [default: 150]
 --e-link-id-min <id> Minimum ID of elinks [default: 1]
 --e-link-id-max <id> Maximum ID of elinks (<2048) [default: 255]
 --period T Period in ms [default: 100]
 --max-overshoot T Max overshoot in ms [default: 10]
 --duration T Duration in s (0 = run forever) [default: 0]

Debug Options:
 --nostats Disable statistics
 --display-stats Print out statistics
 --nohistos Disable histograms
 --pmstats Enable poor man's statistics, implies
--nostats
 --trace Enable tracing

7.3. Monitoring

7.3.1. FelixCore Native Monitoring

The felixcore application provides monitoring and status information via a web front-end. By
default the web front-end is available on port 8080. To access the web front-end use a web browser
and point it to http://hostname:8080. Figure 45 shows a screenshot of the web app.

Figure 45. Screenshot of the integrated felixcore monitoring web app.

7.3.2. Monitoring with felix-web-mon

Felix-web-mon is a user oriented web visualisation application for real time monitoring of FELIX
metrics through live charts as well as visualisation of historical data. It uses the FELIXbus system to

http://hostname:8080

auto-discover FELIX nodes in the same local subnet. Metrics are continuously recorded into a
mongodb database, making it possible to plot historical charts at a later time. Users should make
use of this tool if they require more flexible monitoring with the option of historical archiving of
monitoring data.

Compilation

Felix-web-mon is currently provided as standalone package. Users wishing to compile it should get
the source and instructions from gitlab at the address below.

link: https://gitlab.cern.ch/atlas-tdaq-felix/felix-web-mon

Usage

When installed on a machine (see README.md in gitlab for detailed installation instructions), the
web application can be accessed under the address <hostname>:8000. Here users will be presented
with a front page as shown in Figure 46.

Figure 46. felix-web-mon front page.

The user interface consists of the following parts:

• Menu bar: as shown on the top left of Figure 46. A simple menu with 2 links: a folder icon for
history data plots, and a live link to come back to live mode.

• Status bar: as shown in Figure 47. Displays some information like the client-server connection
status, the number of connected hosts and the mode 'live' or 'history'.

Figure 47. felix-web-mon status display.

• FELIX hosts list: as shown in Figure 48. Displays the FELIX hosts that are connected and
automatically discovered by the FELIXbus API. An icon next to the name of each item shows the
status 'disconnected' (red) or 'connected' (green) of each host.

https://gitlab.cern.ch/atlas-tdaq-felix/felix-web-mon

Figure 48. felix-web-mon host list.

• Charts area: In this panel there are tabs Statistics, Configuration and History (hidden by default)
for each connected FELIX host. The Statistics tab (Figure 46), loaded by default, shows live
charts of metrics. Clicking on an item in the FELIX hosts list on the left displays the chart area of
the corresponding host.

• The Configuration tab: showing the configuration data of corresponding FELIX host (Figure 49).

Figure 49. felix-web-mon config page.

• The History tab: shown only when a user clicks to load history data on the folder icon in the
menu bar (Figure 50).

Figure 50. felix-web-mon history page.

7.4. FelixCore Examples
When running with multiple threads, FELIX will publish data on multiple TCP/IP ports. The
examples are all started with 1 thread using the option -t 1. This ensures that all data is published
on a single TCP/IP port (default 12345), which facilitates debugging. To read out data from a
felixcore application that is started as in the examples below, use a client (for example netio-cat or
fatcat), and point it to port 12345 of the FELIX host. Of course, running with only one worker thread
limits performance and, depending on the workload, FELIX might not be able to keep up with the
load. In that scenario increase the number of worker threads accordingly. The tool felix-bus-list
can be used to obtain the mapping of E-links to TCP ports of a FELIX system.

A running felixcore instance can be stopped by pressing Ctrl+\.

7.4.1. Tests without an FLX Card

Starting felixcore with input from a file (no card required):

$ felixcore -t 1 -f path/to/file.blocks --notoflx

7.4.2. Tests with an FLX Card

Starting felixcore with one processing thread and emulators enabled. Emulators are configured to
send data via PCIe to the FELIX host software.

$ felixcore -t 1 --emu_to_host 0xff

E-link and emulator data configuration can be adjusted with the elinkconfig tool.

Starting felixcore with one processing thread and emulators enabled. Emulators are configured to
send data via detector links to external receivers or via loopbacks back to the FLX card:

$ felixcore -t 1 --emu_from_host 0xff

E-link and emulator data configuration can be adjusted with the elinkconfig tool.

7.5. Connecting to a felixcore instance using NetIO
tools
The felixcore application uses the NetIO publish/subscribe system to distribute data. The tool netio-
cat can be used to analyze published data. For example,

$ netio-cat subscribe --host 192.168.15.2 -t 15 -t 42 -e raw

will let netio-cat subscribe to E-links 15 and 42 of the felixcore application running on the host
192.168.15.2 with the default port 12345. The encoding is set to raw, which will simply write a
hexdump of each received message. For other formatting and subscription options, see netio-cat
-h.

7.6. Connecting to a felixcore instance using FATCAT
FATCAT is an advanced analysis and test client for FELIX and the successor of multiple ad-hoc tools
like felix-client and felix-dcs. The application is currently experimental. For help options see

$ fatcat -h

In the future fatcat can be used to debug data streams coming from FELIX, send data to detectors
via FELIX, record data to disk, manage data subscriptions among multiple FELIX hosts, benchmark
FELIX systems and analyze recorded data.

7.7. Discovering E-links with the FELIX BUS system
Clients that want to receive data from or send data to specific E-links need to know by which FELIX
instances the desired E-links are managed. The FELIX BUS system is used for this purpose. FELIX
instances broadcast at regular intervals information about connected E-links. Clients can retrieve
this information and build internal lookup tables using the library libfelixbus.

The E-Link IDs published by felixcore are global E-link IDs, i.e. they uniquely identify E-links across
all FELIX hosts. This requires that the FELIX ID (command line option --felix_id) is set to a unique
number for each felixcore instance. The default FELIX ID 0 is fine to use for tests where only a
single FELIX is running.

The tool felix-buslist can be used to display the tables:

$ felix-buslist -t
Tables in FelixBus (ctrl\ to quit)

FelixTable::print(): table.size()=4
PeerId FelixID Address
1950EDDFD4821AF225D99EBCE9B22152 0468680B8D9D0388D8D1078B725D2E3B
tcp://10.193.16.62:12345
1950EDDFD4821AF225D99EBCE9B22152 238B9263BA79A05378652F433A25C949
tcp://10.193.16.62:12348
1950EDDFD4821AF225D99EBCE9B22152 4E418C3646578B46FD939AF6AC5FFB5B
tcp://10.193.16.62:12346
1950EDDFD4821AF225D99EBCE9B22152 C87FAE7D74FC1D99BFB454ACD74EBA23
tcp://10.193.16.62:12347

ElinkTable::print(): table.size()=10
PeerId FelixId ElinkId
1950EDDFD4821AF225D99EBCE9B22152 238B9263BA79A05378652F433A25C949 3735579
1950EDDFD4821AF225D99EBCE9B22152 C87FAE7D74FC1D99BFB454ACD74EBA23 3735580
1950EDDFD4821AF225D99EBCE9B22152 4E418C3646578B46FD939AF6AC5FFB5B 3735591
1950EDDFD4821AF225D99EBCE9B22152 0468680B8D9D0388D8D1078B725D2E3B 3735618
1950EDDFD4821AF225D99EBCE9B22152 238B9263BA79A05378652F433A25C949 3735676
1950EDDFD4821AF225D99EBCE9B22152 C87FAE7D74FC1D99BFB454ACD74EBA23 3735701
1950EDDFD4821AF225D99EBCE9B22152 4E418C3646578B46FD939AF6AC5FFB5B 3735729
1950EDDFD4821AF225D99EBCE9B22152 0468680B8D9D0388D8D1078B725D2E3B 3735732
1950EDDFD4821AF225D99EBCE9B22152 238B9263BA79A05378652F433A25C949 3735739
1950EDDFD4821AF225D99EBCE9B22152 C87FAE7D74FC1D99BFB454ACD74EBA23 3735741

The example shows that there is one felixcore instance running (peer ID 1950…) with four threads
(FELIX ID 0468…, 238B…, 4E41…, C87F…), each reachable on a separate TCP port. This felixcore
instance handles 10 different E-Links which are distributed among the four worker threads.

7.8. Debugging

7.8.1. Using the FelixCore event tracing framework

FelixCore includes a trace framework that can be used to gain a better understanding about
latencies added by individual parts of a communication chain or to get detailed information about
the dataflow of a single message through the system. The trace framework operates by logging
events with precision timestamps to a file.

To enable the trace framework, start the felixcore application with the option \verb|--trace|.
FelixCore will then timestamp events and record these events in a file "trace.csv" in the current
working directory.

The contents of trace.csv will contain of lines similar to this:

20605900,MSG_RECV,0
20606530,FROMHOST_BLOCK_WRITE_START,0
20606584,FROMHOST_BLOCK_WRITE_COMPLETE,0

The CSV file contains three columns.

1. The first column contains the timestamp of the event in microseconds.

2. The second column contains the type of the event. Currently we have these events:

TOHOST_BLOCK_READ

Issued when a 1 kB block is read from the FLX card

FROMHOST_BLOCK_WRITE_START

Start of DMA transfer of blocks to the FLX card

FROMHOST_BLOCK_WRITE_COMPLETE

DMA transfer to the card completed

MSG_RECV

A message was received from the network for an E-link

MSG_SEND

A data chunk is published and is being sent to clients in the network

3. The third column contains an E-Link id that associates an event with an E-link if applicable.

Note that the trace.csv file is not sorted by timestamp. If needed, the events in the file need to be
sorted in a post-processing step.

Chapter 8. Resources for Front-End
Developers
This section is aimed at collecting useful information for front-end developers to aid the design and
implementation of front-end firmware/hardware for interaction with FELIX. Useful tips based on
experience so far will also be presented, in a section that will grow over time as more feedback is
received.

8.1. FELIX Firmware Modules for Front-end Users
The FELIX team have produced a number of self contained firmware modules which are intended
for integration into front-end firmware both for testing and production purposes. These will make
it possible to test data transfer functionality from the output layer of the front-end firmware to
FELIX and beyond, before integrating more of the front-end logic. These modules can be divided up
between GBT and FULL mode use cases.

8.1.1. Downloading Firmware Source

A full description (including diagrams) of the modules discussed below, as well as the relevant
firmware source, is available on the FELIX project distribution site:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/examples/

The site contains multiple revisions, for compatibility with different FELIX firmware versions. GBT-
compatible packages are labelled 'ElinkInterfaceSources' and FULL mode-compatible packages are
labbeled 'FullmodeInterfaceSources'. Please consult the documentation within the files for
compatibility information.

8.1.2. GBT Test Modules

From a GBT perspective the modules provided depend on whether the GBT implementation is in an
FPGA or with a GBTX chip. Common to both is a simple data generator module, which generates an
incrementing counter and can be attached to the input port of the GBT module to provide a basic
data source for link testing.

GBT-FPGA

For FPGA-based GBT a module will be provided to wrap and drive the GBT link in communication
with FELIX (in both directions). All modules will be fully compatible with the official GBT-FPGA
core[CERN_GBT_core].

GBTx

For GBTx chips all that is needed is to connect the provided data generator to a chip e-port, thus
providing data on one E-link across the GBT.

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/examples/

8.1.3. FULL Mode Test Modules

Link Layer Tests

For FULL mode implementations the FELIX developers provide a link layer test package, making it
possible to verify functionality at transceiver level (e.g clock jitter stability, cleaning and
configuration). Users should be able to integrate this into their front-end design for basic tests
before implementing higher level link protocols.

Protocol Tests

Once the link layer is verified, users can integrate the 'stream controller' module, also provided by
the FELIX developers, which manages the FULL mode link protocol and adds e.g. start and end of
packet markers. This is recommended for use not just in testing but also final implementation.
Alongside this module a simple data generator is also provided which can be used for testing data
transfer across the link.

8.2. General Hints and Tips

8.2.1. Known Issues with GBTx

There is a known issue with GBTx chips whereby links disconnected from any front-end source
generate spurious data at random intervals. If using FELIX with a GBTx it is strongly recommended
that any links which are disconnected from the front-end be deactivated in elinkconfig. This will
prevent spurious data causing confusion in front-end testing.

8.2.2. Known Technical Requirements for FELIX Communication

• E-link ''chunks'' or packets are even multiples of bytes or 8b/10b symbols. If an odd number of
bytes are received from the front end, FELIX will add an extra padding byte. In the to-front end
direction, the length must be an even number of bytes.

• Synchronization of 8b/10b encoding requires two consecutive comma characters.

8.2.3. Examples of Design Best Practice based on Current Experience

• For GBT-mode transmission to FELIX, use 8b/10b encoding on the E-links. Avoid the non-
encoded fixed length or variable length formats, because no resynchronization is possible if bits
are lost or repeated on the E-link. Comma symbols are used to align to 10-bit symbols in the bit
stream. They are considered idles and can be inserted in the data stream anywhere. Transmit
''frequent'' pairs of commas. This will minimize data loss when FELIX tries to resynchronize
when the symbol boundary is lost due to a missed or repeated bit on the E-link.

• The E-link clock, input, and output data rates are independent. The only restriction is that
within a GBT E-link group all the clocks must have the same frequency, all the data inputs the
same data rate and all the outputs the same data rate. However groups can be setup
independently from each other. Read the GBTx manual carefully to understand the GBTx group
restrictions and bit order. Note, however, that a clock output is only available if its
corresponding Tx is enabled. This means, for example, that a bank running with 320 ,Mb/s E-

links can supply only two clocks, but they can be 40, 80, 160 or 320 MHz.

• In 8b/10b encoded E-links, FELIX can be asked to assert BUSY by sending BUSY-ON and BUSY-
OFF symbols (i.e. out-of-band symbols that can be sent any time, even within data packets). This
should be done only in exceptional cases or at start of run. It should not be the normal mode of
protecting against buffer overflow. Instead, complex dead time should be defined to prevent
most buffer overflows.

• The event data sent to FELIX are not expected to be ATLAS-standard event fragments. FELIX just
transports the data to the ''Data Handler'' (a.k.a.\~Software ROD) where detector specific
software may transform the data as required and format it into ATLAS-standard event
fragments for the ATLAS Read out system (ROS).

• In addition to sending all events to the Data Handler, FELIX can send all, or a sample of, events
to other network end points for monitoring. Extra monitoring data may be included as packets
separate from event data packets in the E-link data stream by using FELIX’s stream IDs at the
start of the packet.

• DCS information may be included as packets separate from event data packets in an E-link data
stream by using FELIX’s stream IDs at the start of the packet.

• Any 80 Mb/s E-link can be used to connect to a GBT-SCA ASIC. The E-link clock must be
configured to use 40 MHz, i.e. the data is sent in DDR mode.

• The ''EC'' link can be used as an ordinary E-link at 80 Mb/s; its E-link clock may be either 40 or
80 MHz.

• Fiber connections: to be added

• Broadcasts to the front end: to be added

• TTC: FELIX can send TTC Level-1 Accept information on any E-link declared as a ''TTC'' E-link.
''TTC'' E-links can be 80, 160 or 320 Mb/s E-links, to transfer 2, 4 or 8 TTC bits on every BC clock.
The contents of the TTC word is defined by the FELIX configuration and can be chosen from the
ten bits in Table 3. Note: In all three cases, the E-link clock can be 40 MHz, i.e. BC clock The data
is sent with FIXED latency.

Table 3. List of bits decoded from the TTC system that can be chosen to be sent on an E-link defined as a TTC
E-link.

Brcst[7] Brcst[6] Brcst[5] Brcst[4] Brcst[3] Brcst[2] ECR BCR B-chan L1A

8.2.4. Frequently Asked Questions

Is GBT wide mode supported?

No.

Is GBT 8b/10b mode supported?

Yes.

Is the phase of the eight ''utility'' clocks fixed with respect to the E-link clocks?

Yes, there is a fixed relationship with the E-Link clocks. Note that the eight utility clocks have
worse jitter than the E-link clocks.

Can the GBT output a 40 MHz E-link clock, use that clock in 40 MHz DDR mode for the to-
frontend link, but accept data on the uplink at 160 or 320 Mb/s? (Assuming the FE ASIC
multiplies the 40 MHz to 80, 160 or 320 MHz.)

Yes, that is possible. Also the to-frontend link can receive at 80, 160 or 320 Mb/s.

Is there a maximum packet length on the E-link in 8b/10b mode?

No.

Appendix A: Setting up a TTC System for use
with FELIX
This section is meant to help users of FELIX systems with the set-up of a TTC system. It is a work in
progress, maintained by Markus Joos (CERN). Figure 51 shows the final cabling of TTCvi and TTCvx
modules for a TTC setup with B-channel. The A-channel carries the Level-1 Accept; the B-channel
carries BCR and the other TTC commands. The TTCvi-TTCvx pair should have already been tuned. If
not, see Section A.1 below. Note: For a TTCex this may look different. A list of all the materials you
will require to set up a TTC system is presented in Table 4.

Figure 51. Image of cabled TTC system with B-channel connections

Table 4. Materials needed to set up a TTC system

Item Source Remarks

VMEbus crate Can be rented from the CERN
Electronics Pool

Other crates may do as well

VMEbus master We recommend a SBC from
Concurrent Technologies
(ATLAS standard). Support can
be given for VP717, VP917 and
VP-E24 (64 bit, compatible with
TDAQ software release tdaq-05-
05-00 and above).

TTCvi VMEbus card

Can be rented from the CERN
Electronics Pool (but the Pool
may be out of stock)

The TTCvi is no longer in
production. Make sure the VME
base address switches are set to
match your software.

TTCvx VMEbus card or TTCex
VMEbus card

TTCvx and TTCex can be rented
from the CERN Electronics Pool
(but the Pool may be out of
stock)

The TTCvx/ex is no longer in
production. The TTCvx has a
LED driver, the TTCex has a
laser driver

3 LEMO cables (1 or 0.5 ns)

1 optical multi-mode (TTCvx) or
single-mode (TTCex) fiber with
ST connectors on both ends

Max length of the fibre: TTCvx:
20 m; TTCex: 100 m

TTCoc & ATLAS (not clear who
to ask; Maybe P. Farthouat) &
TTC fan-out; needed if you have
several FELIX

optical attenuator Needed only for use with a
TTCex without TTCoc. The
optical attenuator has to be a
single-mode attenuator of 3-20
dB and has to be connected
directly to the TTCex output.
The FTPDA-R155 should work
with a TTCvx without
attenuator. In case of a TTCex
an attenuator of 3 dB is
recommended for the FTPDA-
R155. The FTPDA-R155 has a
sensitivity of -31 dBm and
saturates at +1 dBm.

If you need to tune the TTCvi-TTCvx pair, you need in addition:

• 2 LEMO cables (5-10 ns)

• 2 LEMO Y-adapters

• 2 LEMO-BNC adapters

• 2 50 Ohm terminators (Only required if your oscilloscope has no internal termination.)

A.1. Tuning a TTC system
If your TTCvi-TTCvx pair has not been tuned, follow the instructions in this section. Cable the TTC

system as shown in Figure 52. Note: for a TTCex this may look different. For more information
please consult the section "Tuning procedure 2" of the TTCvi manual (http://www.cern.ch/TTC/
TTCviSpec.pdf).

Figure 52. Image of cabling for tuning a TTC system

Note: The question has come up if channel A and channel B are correctly cabled in the picture
above. Here is a reply from the TTC expert (Sophie Baron):

A "good" configuration when channel B is not used is indeed to have it tied to "1". And it is right that
having Channel B connected to OUTPUT B gives a static "1" on channel B. However, the termination
scheme at the TTCex inputs keeps as well unconnected channel inputs (both B and A) to "1" by
default (it is negative ECL logic, and the Vin is at -2.08V by default). Therefore, both schemes could
be used identically. One additional remark: of course, if you leave both A and B unconnected at the

http://www.cern.ch/TTC/TTCviSpec.pdf
http://www.cern.ch/TTC/TTCviSpec.pdf

input of the TTCex, you will have both channels A and B to "1", and this is not good as the TTCrx
needs to see two different behaviours on A and B to be able to differentiate them (the rule is that
the A-channel must not have more than 11 consecutive "1" whereas B can have any type of
sequence).

This description can be broken down into the following points:

• Connect the TTCvi A/ecl CHANNEL OUT output to the TTCvx A/ecl CHANNEL IN input via a Y-
adapter.

Figure 53. Image of cabling for tuning a TTC system

• Connect, via a Y-adapter, one of the TTCvx CLOCK OUT/ecl outputs to the TTCvi CLOCK IN
bc/ecl input. Check that the BC_EXT indicator is lit on the TTCvi as shown below. The TTCvx
internal clock may be used.

• Set the TTCvi trigger mode (= 5) to random at the highest rate (100 kHz) and disable the
event/orbit/trigger-type transfers. In order to do this write 0x7005 to the D16 VMEbus CSR1
register at offset 0x80. This can be done easily for vme_rcc_test. Note: The A24 base address of
the TTCvi in the CERN reference system in TBED is 0x555500. This should light up the TTCvi A-
Ch yellow indicator and the A/ecl CHANNEL OUT output should now carry 25 ns long trigger
pulses.

• With an oscilloscope look at the TTCvx Channel-A input in respect to the clock output, as shown
below.

Figure 54. Image of cabling for tuning a TTC system

• Adjust the TTCvi BC delay switch such that the rising edges of the Channel-A pulses occur within
4 ns before to 2 ns after the rising edges of the clock signal.

• Setting the delay switch in position 2 and using 1 ns long interconnecting cables for the clock
and the A and B channels corresponds to the above mentioned timing criteria. Note from
Markus Joos: Even though I used 1 ns cables, I had to set the switch to position 5 (see picture
above) in order to meet the requirement of step 5.

A.2. Guide to TTC Channel B
The following section describes the structure of the TTC 'B channel' data stream, and how it may be
decoded and operated by users. The information in this section is provided courtesy of Alessandra
Camplani and the LAr group.

The data stream arriving through TTC B channel can be of two types: short broadcast commands or
long individually-addressed commands/data.

Short broadcast commands are used to deliver messages to all TTC destinations in the system, while
long individually-addressed commands/data are used to transmit user-defined data and
instructions over the network to specific addresses and sub-addresses. These two types of
command have different dedicated frame formats, as shown in Figure 55:

Figure 55. Image of cabling for tuning a TTC system

The difference between the two command types can be illustrated with the example below. When
not in use the B channel IDLE state is set to 1. When a sequence of commands is sent, the data
transmission state changes from 1 to 0. After the first zero received it is possible to distinguish
between short broadcast and long address commands: if the second bit in the stream is a 0 then the

command is a short broadcast, if it is a 1 then the command is of long address type.

IDLE=111111111111
 Short Broadcast, 15 bits:
 00TTDDDDEBHHHHH:
 T= test command, 2 bits
 D= Command/Data, 4 bits
 E= Event Counter Reset, 1 bit
 B= Bunch Counter Reset, 1 bit
 H= Hamming Code, 5 bits
 Long Addressed, 41 bits
 01AAAAAAAAAAAAAAE1SSSSSSSSDDDDDDDDHHHHHHH:
 A= TTCrx address, 14 bits
 E= internal(0)/External(1), 1 bit
 S= SubAddress, 8 bits
 D= Data, 8 bits
 H= Hamming Code, 7 bits

The short broadcast command type is used to send two important values: the Bunch Counter Reset
(BCR) and the Event Counter Reset (ECR).

The BCR is used to reset the bunch crossing counter, which is increased every clock cycle on the 40
MHz clock. This is a 12-bit counter, also called BCID. A BCR command is sent roughly every 89 μs,
corresponding to the time that a bunch needs to do an entire circuit of the LHC. During this time the
BCID counter reach its maximum value, 3564 counts.

The ECR is used to increase the event reset counter. The periodicity of this reset is decided by each
experiment, with ATLAS having it set to 5 seconds. The event reset counter combined with the L1A
counter gives the Extended L1ID (EVID). This is a 32-bit value consisting the L1A counter in the
lower 24 bits, and the event reset counter in the upper 8. Every time that an ECR is received the
upper counter is increased by 1 and the lower part is reset to zero. Every time that a L1A is received
the lower part is increased by 1.

BCID and EVID values are used as a label for the data accepted by the trigger.

The long address command type is used to transport another important value: the Trigger Type
(TType). Each L1A transmission is followed, with variable latency, by an 8-bit TType word. This
word is generated inside the LVL1 Central Trigger Processor (CTP) and distributed from the CTP to
the TTCvi modules for each of the TTC zones in the experiment via the corresponding LTP modules.

The presence of a Trigger Type within long address commands is announced by a sub-address (8
bits) set to 0.

Table 5. Trigger type 8-bit word: Each bit represent the sub-detector which fired the trigger or the data type.

Sub-
Trigger

physics ALFA FTK LAr
demonstr
ator

Muons Calorimet
er

ZeroBias Random

Bit 7 6 5 4 3 2 1 0

As shown in Table 5, each bit has a specific role. In calibration mode, bits 0 to 2 can be used to
distinguish between up to eight different possible types of calibration trigger within each sub-
detector. Bits 3 to 6 are used to indicate which sub-detector or subsystem fired the trigger. Bit 7
represents physics trigger-mode when set to 1, and calibration mode when set to 0.

A.2.1. B channel decoding firmware

An effort is under way to provide a centrally maintained firmware module to decode TTC B-channel
data. In the short term, users are advised to refer to a version produced for LAr front-ends by
Alessandra Camplani. The module code can be found in gitlab:

https://gitlab.cern.ch/atlas-lar-ldpb-firmware/LATOME-ttc

The code itself is in the folder code_ttc and the files dedicated to TType decoding are:
Bchan_top.vhd, SMdecoding_cnt.vhd and TType_decoding. The simulations for this specific part can
be found in the simulation folder. Here there is a testbench for the Bchan_top entity and another
one for TType_decoding entity.

Development of this module is ongoing, with the latome_ttc branch being actively maintained and
kept up-to-date.

A.2.2. Channel B decoding software

In order to test channel decoding, it is recommended that users employ the menuRCDTtcvi
application, provided as part of the ATLAS TDAQ software release. Within the application select
'BGO menu' and then option 13 'send asynchronous command'. From here it should be possible to
select either a short of long command. In the case of a short command simply enter the data word
to be sent. For a long command enter an address 0 (for broadcast), 0 for internal registers,
subaddress 0 for trigger type, and the data word to be sent.

A.3. Useful documents
You may find additional useful information in this document from the ATLAS LAr group:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/
CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf

https://gitlab.cern.ch/atlas-lar-ldpb-firmware/LATOME-ttc
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf

Appendix B: BNL-711 Technical Information
This appendix will collect technical information for the BNL-711 board which may be relevant to
user test stand installations.

Figure 56. The BNL-711 V1.5 board.

B.1. User Jumper Map and Functional Specification
The BNL-711 provides a number of I/O connectivity options. These are can be selected by modifying
the position of the user jumpers shown by the red boxes in Figure 56. A specific map of the relative
position and name of each jumper is presented in Figure 57. A detailed description of the function
of each jumper, and to which board configuration options it relates, is available in the sections
below.

Figure 57. BNL-711 V1.5 User Jumper Map

B.1.1. J1

For uC configuration with 6-pin ISP programmer.

1 MISO

2 VTG-SYS25

3 SCK

4 MOSI

5 RSTn

6 GND

B.1.2. J2

PRSNT selection.

1 PRSNT_FP
GA

2 PRSNT

3 PRSNT1

2 & 3 are connected.

B.1.3. J8

Backup I2C/SMB connector.

1 SYS33

2 PCIE_SCL

3 GND

4 PCIE_SDA

B.1.4. JMP1

Connect FPGA_PROG_B to the uC_FPGA_PROG_B (PC5). Connected by default.

1 uC_FPGA_P
ROG_B

2 FPGA_PRO
G_B

B.1.5. JMP2

Connect FPGA_INIT_B to the uC_FPGA_INIT_B (PD2). Connected by default.

1 uC_FPGA_I
NIT_B

2 FPGA_INIT
_B

B.1.6. JMP3

WAKE_N from PCIe to FPGA. NOT connected by default.

1 PCIE_WAK
E_N

2 PCIE_WAK
E_N_FPGA

B.1.7. JMPR1 & JMPR2

JMPR1: FLASH_A25 selection.

1 GND

2 uc_FLASH_
A25

3 SYS25

JMPR2: FLASH_A26 selection.

1 GND

2 uc_FLASH_
A26

3 SYS25

The FPGA firmware has the highest priority to set FLASH_A25 and FLASH_A26. The Jumpers have
lowest priority.

If uC is used, when uC_FLASH_A is '1', the FLASH_A will be '0'; when uC_FLASH_A is '0', the
FLASH_A will be '1'.

If Jumpers are used, when it is connected '1', the FLASH_A will be '0'; when it is connected '0', the
FLASH_A will be '1'.

As default, the first Flash partition can be used, then 2 & 3 are connected.

B.2. MiniPOD Connectivity Map
The BNL-711 hosts 4 MiniPOD Tx/Rx Transceiver pairs, located in two banks either side of the FPGA,
as shown in Figure 56. The transceiver sockets have a specific logical order, presented in Figure 58.
Users should connect their optics according to this map to ensure the correct link order is
preserved.

Figure 58. BNL-711 MiniPOD Connectivity Map.

Appendix C: Guide to FELIX Data Structures
• Data buffered in the FPGA per E-link or per FULL mode link and transferred under DMA control

• Fixed block size of 1 kB

• The blocks are transferred into a contiguous area, functioning as a circular buffer, in the main
memory of the PC.

• The DMA runs continuously, thereby eliminating DMA setup overheads and achieving high
throughput (about 12 GB/s for the 16-lane interface of the FLX-711).

• Event fragments or other types of data arriving via the FE links are referred to as "chunks" and
can have an arbitrary size.

• 1 kB blocks of E-links or FULL mode links are multiplexed into a single stream.

Figure 59. FELIX block structure

Figure 60. List of FELIX Data Structures

Appendix D: Guide to Using FELIX with GBT-
SCA
This appendix is included with thanks to Paris Moschovakos and the DCS team.

D.1. Introduction
The Slow Control Adapter (GBT-SCA) ASIC is part of the GBT chip-set and it is dedicated for the slow
control of the front-end boards. It features several sub-devices that facilitate both Front end
configuration and monitoring environmental variables (voltages, temperatures, etc.) on and around
the detector. The sub-devices are ADCs, DACs, general purpose IO, and controllers for I2C, SPI and
JTAG. An SCA is connected to a GBTx via any 2-bit E-link. The E-link must be operated in 40 MHz
DDR mode (80 Mb/s) with HDLC encoding. Up to 41 SCAs can be potentially connected to a single
GBTx when FELIX is configured accordingly.

Figure 61. GBT frame paths and E-links.

D.2. Typical test setup
A typical test setup consists of a board that houses a GBTx that is connected to FELIX via an optical
fibre and to a GBT-SCA ASIC via an e-link.

A Versatile Link Demo Board (VLDB) (https://espace.cern.ch/GBT-Project/VLDB/default.aspx) was
designed that can be directly plugged into a FELIX board and hosts both a GBTx and an SCA. (The
VLDB demo board can be procured from the GBT group.) Such a setup is shown in Figure 62.

https://espace.cern.ch/GBT-Project/VLDB/default.aspx

Figure 62. Evaluation setup with an SCA on VLDB. SCA and GBTx are interconnected externally in VLDB via
mini-HDMI connectors J32 (PRIMARY) and J33 (SCA PORT).

To simplify the evaluation of the setup, the VLDB possesses two LEDs which are connected to two
general purpose outputs of the SCA. This can be used to validate the functionality all the way from
the FELIX host to the SCA itself. In order to do that, the 'fec' tool, of the ftools family as mentioned in
Section 6.6.3, can be used.

The following line requests from the SCA at <gbt_link_number> where the VLDB is connected, to
blink its LED 100 times.

fec -G <gbt_link_number> -r 100 -x 18 o

D.3. Operation to set up an SCA e-link
A configuration procedure is needed both for FELIX and the GBTx itself. The configuration is mostly
a description of the setup at hand and the mapping of the e-links that are connected. There are also
some setup specific parameters to be configured.

In the case where the SCA is connected to the dedicated EC e-link, one should just check that it is
enabled via the elinkconfig GUI. That specific e-link is pre-configured with the appropriate HDLC
SCA encoding and corresponding bit endianness and can be used directly for any SCA.

Figure 63. SCA EC E-link.

In the special case that one wants to use one of the data path e-links, one should configure FELIX
via elinkconfig accordingly. SCA uses HDLC encoding instead of the typical 8b/10b which is the
standard for the data e-links as can be seen in Figure 64. Moreover, the bit orientation is different
than the other data e-links. By selecting the HDLC format in the drop-down menu, elinkconfig takes
care both for the orientation and the encoding, indicating that an SCA is connected to that specific
GBT group and path.

Figure 64. SCA HDLC encoding.

D.4. Low level operations with fec tools to configure
and establish basic communication
The fec tool, as described in Section 6.6.3, is the dedicated 'ftool' to use for the SCA e-link handling. A
number of operations to the various SCA interfaces is possible using its arguments. Depending on
your setup please check the full list of possible operations at [fig:fec_help].

D.5. The integrated production system — Introduction
The on-detector DCS system that handles the slow control traffic and the configuration of the front-
end electronics, based on the GBT-SCA, is part of FELIX ecosystem and closely integrated into it. A
proposed solution is presented on the following scheme. The slow control and configuration traffic,
unlike physics data, has different requirements in terms of throughput, latency, availability and
reliability.

Figure 65. OPC UA for GBT-SCA Architecture.

FELIX DCS is the software that handles the SCA traffic arriving at FELIX card. Towards the FELIX
clients it is based on the middleware Open Platform Communications Unified Architecture (OPC UA,
of the OPC foundation, (https://opcfoundation.org/[https://opcfoundation.org/) which is an industry
standard for secure and reliable exchange of data in industrial automation and other controls-
related areas.

The server/client architecture that the platform uses, allows for different purpose clients to be
served by a single server per FELIX host. The data flow to/from the ATLAS control room, not only
serves the control and monitoring data of the detectors' conditions but also implements the
configuration path of the on-detectors electronics and their initialization for data taking or
calibration. In addition, system experts can monitor the status of the employed technology and get
statistics and other information in order to diagnose the various system layers.

All those requirements potentially imply many different OPC UA clients that would like to receive
SCA data from the setup at the same time. The chosen OPC UA architecture will ensure the reliable
and seamless data delivery and the compatible integration into the current DCS systems. This
means that OPC clients in both DCS and a detector configuration server can communicate with the
same SCA ASIC and the OPC server will correctly arbitrate their access.

D.6. The SCA software (SCA-SW), its demonstrators
and the OPC-UA SCA Server

D.6.1. SCA-SW library

https://opcfoundation.org/
https://opcfoundation.org/

Figure 66. SCA-SW Library.

A software library called SCA-SW has been designed and implemented. Its purpose is to provide
software support for the SCA chip by providing a high-level programming interface (for example, a
function that invokes an SCA ADC conversion and returns the converted voltage as a float number).

The following key decisions have accompanied the design process:

• The library should be a modular piece of software supporting SCA chip(s) no matter how it is
physically connected to the host system. Therefore the core part of the library operates on
protocol data units of the SCA chip, which normally would be encapsulated in the HDLC
protocol. There are a number of predefined "HDLC backends" which are services to send such
encapsulated SCA requests and receive replies.

• The library should scale from the simplest use cases up to scenarios of thousands of SCAs.

• The library should be able to profit from concurrency features of the host system, including
multicore and multi-threaded operation.

• The library should be written in a chosen version of the standard C++ dialect.

• The library should be designed with reliability and robustness as a key design choice because it
would serve critical, 24/7 communication.

The out-of-the-box SCA-SW, as of October 2017, includes among its backends the NetIO backend
which enables seamless communication with the FELIX software ecosystem, and particularly with
the felixcore application which can route the traffic between an application based on SCA-SW and

any SCA connected through fibers to chosen FELIX machine.

Being backend-agnostic, the addressing scheme shown in Table 6 has been chosen for the library to
identify a given SCA in case of NetIO.

Table 6. Addressing scheme

Backend type Discovery variant SCA address to use

NetIO FELIX mapper not used simple-
NetIO://direct/hostname/port1/p
ort2/elink

Where:

1. Hostname is a hostname of
the FELIX machine
handling given traffic.

2. Port1 is the TCP/IP port on
which FELIX will receive
and transport further
through fibers to the SCA.
Typically it is 12340.

3. Port2 is the TCP/IP port on
which FELIX will distribute
the replies of the SCA chip.
Typically it is 12345.

4. E-link is a two-digit
hexadecimal E-link
identifier. For example, 3F
would mean the EC link of
the first fibre of the FLX
card. You can use 'felink'
tool to compute the E-link
identifier. Note that neither
decimal format nor
prefix/suffix are supported
(e.g. it’s illegal to put 0x3f
instead of 3F).

FELIX mapper used To be defined later.

The SCA-SW provides a number of demonstrators for various SCA components, like a demonstrator
to print out ADC conversion results, program a VMM3 chip through SPI, etc.

D.6.2. SCA OPC-UA server

The provided OPC-UA server implementation for the SCA is based on the SCA-SW (explained above)
intending to profit from all features of the SCA-SW library and providing a high-level and user-

friendly OPC-UA address space to OPC-UA clients.

The OPC-UA server has been designed and implemented using the quasar framework (see
https://github.com/quasar-team/quasar). Its design is presented in Figure 67.

Figure 67. The quasar design diagram of the OPC-UA server for the SCA.

As of January 2018, the server supports the following functionality:

• Communication with any number of SCAs, through NetIO or any other HDLC backend. Each SCA
is identified in its address-space by a name, and its unique 24-bit "SCA identifier" which is
written by the chip manufacturer in the SCA silicon. The identifier is read using the SCA-SW
library when a connection to given SCA is opened.

• Up to 32 ADC channels per SCA which are polled with the configured conversion frequency.
Note that channel 32 has no external connection; it is connected to the on-chip temperature
sensor that monitors the SCA temperature.

• Up to 32 General Purpose I/O pins per SCA. Each pin can be configured as an input or output
through the server config file.

• Up to 4 DACs per SCA; the DACs take the desired voltage as a float (0..1V).

• Up to 8 SPI slaves per SCA. The SPI configuration (like speed, phase, mode . . .) can be
configured in the server config file.

• Up to 16 independent configurable I2C master controllers

The JTAG controller is in-progress and not yet available as of January 2018.

https://github.com/quasar-team/quasar

D.7. SCA References
1. SCA-SW gitlab repo, https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware

2. Twiki for SCA-SW end-users, https://twiki.cern.ch/twiki/bin/viewauth/Atlas/AtlasGbtScaOpcUa

3. Twiki for SCA-SW developers

4. OPC-UA SCA gitlab, https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware

https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/AtlasGbtScaOpcUa
https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware

References
▪ [1] CERN, GBT & Versatile Link, url: https://ep-ese.web.cern.ch/content/gbt-versatile-link.

▪ [2] F. Vasey et al., The Versatile Link common project: feasibility report, Journal of
Instrumentation 7.01 (2012) C01075, url: http://stacks.iop.org/1748-0221/7/i=01/a=C01075.

▪ [3] CERN GBT Project, The GBTx Manual, V0.14 (2016), url: https://espace.cern.ch/GBT-Project/
GBTX/Manuals/gbtxManual.pdf.

▪ [4] GBT Module for the FELIX Project, url: https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/
FELIX_GBT_MANUAL.pdf.

▪ [5] ATLAS Felix Group, Specifications for the FELIX FULL mode link, url: https://atlas-project-
felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf.

▪ [6] Xilinx, Xilinx VC709 Development Kit, url: http://www.xilinx.com/products/boards-and-kits/
dk-v7-vc709-g.html.

▪ [7] ATLAS FELIX Group, BNL-711 v2 Manual, url: https://atlas-project-felix.web.cern.ch/atlas-
project-felix/user/docs/BNL-711_V2P0_manual.pdf.

▪ [8] Supermicro, Supermicro X10SRA-F Motherboard Model Specification, 2016, url:
http://www.supermicro.nl/products/motherboard/Xeon/C600/X10SRA-F.cfm.

▪ [9] CERN TTC FMC project, url: http://www.ohwr.org/projects/optical-cdr-fmc/wiki.

▪ [10] TTC group, CERN TTC homepage, url: http://ttc.web.cern.ch/TTC.

▪ [11] Analog Devices Inc., ADN2814: Continuous Rate 10Mb/s to 675Mb/s Clock and Data Recovery
IC with Integrated Limiting Amp, url: http://www.analog.com/static/imported-files/data_sheets/
ADN2814.pdf.

▪ [12] Silicon Labs Inc., Si5345/44/42 Rev D Data Sheet - 10-Channel, Any-Frequency, Any-Output
Jitter Attenuator/ Clock Multiplier, url: http://www.silabs.com/SupportDocuments/
TechnicalDocs/Si5345-44-42-D-DataSheet.pdf.

▪ [13] Silicon Labs Inc., Si5324 Data Sheet - Any-Frequency, Any-Output Precision Clock Multiplier
/ Jitter Attenuator, url: https://www.silabs.com/documents/public/data-sheets/Si5324.pdf.

▪ [14] Xilinx, Xilinx Vivado Design Suite, 2016, url: https://www.xilinx.com/products/design-tools/
vivado.html.

▪ [15] Linear Technology, LTC2991 Data Sheet - Octal I2C Voltage, Current, and Temperature
Monitor, url: http://cds.linear.com/docs/en/datasheet/2991ff.pdf.

▪ [16] The Versatile Link Developers, The Versatile Link Common Project, 2008, url:
https://espace.cern.ch/project-versatile-link/public/default.aspx.

▪ [17] CERN GBT-FPGA project, url: https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx.

https://ep-ese.web.cern.ch/content/gbt-versatile-link
http://stacks.iop.org/1748-0221/7/i=01/a=C01075
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/FELIX_GBT_MANUAL.pdf
https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/FELIX_GBT_MANUAL.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf
http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf
http://www.supermicro.nl/products/motherboard/Xeon/C600/X10SRA-F.cfm
http://www.ohwr.org/projects/optical-cdr-fmc/wiki
http://ttc.web.cern.ch/TTC
http://www.analog.com/static/imported-files/data_sheets/ADN2814.pdf
http://www.analog.com/static/imported-files/data_sheets/ADN2814.pdf
http://www.silabs.com/SupportDocuments/TechnicalDocs/Si5345-44-42-D-DataSheet.pdf
http://www.silabs.com/SupportDocuments/TechnicalDocs/Si5345-44-42-D-DataSheet.pdf
https://www.silabs.com/documents/public/data-sheets/Si5324.pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://cds.linear.com/docs/en/datasheet/2991ff.pdf
https://espace.cern.ch/project-versatile-link/public/default.aspx
https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx

	FELIX User Manual
	Table of Contents
	Chapter 1. Welcome to the FELIX User Manual
	1.1. Overview
	1.2. Document Compatibility

	Chapter 2. Introduction to FELIX
	2.1. FELIX Variants and Functionality
	2.1.1. Gigabit Transceiver (GBT) and the Versatile Link
	2.1.2. FULL Mode
	2.1.3. Propagation of ATLAS TTC Information

	Chapter 3. Hardware Requirements and Setup
	3.1. Recommended Hardware Platforms
	3.1.1. FPGA I/O Hardware: VC-709 (Commodity Platform)
	3.1.2. FPGA I/O Hardware: Custom Platforms
	3.1.3. FELIX Host Systems

	3.2. Installation of VC-709
	3.3. Installation of BNL-711 and BNL-712
	3.4. Connecting to an existing TTC system
	3.4.1. VC-709 Only: TTCfx v3 Overview and Installation
	3.4.2. Connecting TTC and BUSY

	3.5. Configuring FELIX Clock
	3.5.1. Clock Source Selection
	3.5.2. TTC Clock Recovery: ADN2814
	3.5.3. Clock Jitter Cleaning

	3.6. Connecting and Initialising Optical Links
	3.6.1. Physical Link Layer Status: VC-709
	3.6.2. Physical Link Layer Status: BNL-711/712
	3.6.3. Logical Link Layer Initialisation

	Chapter 4. Firmware Releases and Programming
	4.1. Firmware Distribution Protocol
	4.1.1. Release Announcements
	4.1.2. Firmware Distribution Site
	4.1.3. Supported Link Protocols & Encoding

	4.2. Firmware Programming
	4.2.1. JTAG Connectivity
	4.2.2. Setting up the Vivado™ Suite
	4.2.3. Programming the FPGA Directly
	4.2.4. Programming the FLASH ROM (VC-709)
	4.2.5. Programming the FLASH ROM (BNL-711/712)
	4.2.6. Enabling new FPGA Configuration

	Chapter 5. Software Distribution and Installation
	5.1. Software Distribution Protocol
	5.1.1. Pre-requisites
	5.1.2. Release Announcements
	5.1.3. Release Distribution Site

	5.2. Software Installation Instructions
	5.2.1. Driver RPM Installation Instructions
	5.2.2. Installation of FELIX Software Suite

	Chapter 6. Basic Tools
	6.1. E-link Configuration with elinkconfig
	6.1.1. Global Panel
	6.1.2. To-Host Panel
	6.1.3. From-Host Panel
	6.1.4. Link and Data Generator Configuration Upload Dialog
	6.1.5. Guide to Valid E-link Configurations
	6.1.6. Guide to common configuration tasks

	6.2. Low Level Tools (System Status Monitoring & Control)
	6.2.1. flx-info
	6.2.2. flx-config
	6.2.3. flx-init
	6.2.4. flx-reset
	6.2.5. flx-monitor

	6.3. Dataflow from Front-end via FELIX to FELIX host PC
	6.3.1. fdaq

	6.4. Dataflow from FELIX Host PC to Front-end Systems via FELIX
	6.4.1. fupload

	6.5. FELIX Configuration Tools
	6.5.1. felink
	6.5.2. fereverse
	6.5.3. fgpolarity
	6.5.4. feconf
	6.5.5. femu
	6.5.6. feto
	6.5.7. fflash

	6.6. General Debugging Tools
	6.6.1. fcheck
	6.6.2. fedump
	6.6.3. fec

	6.7. Remote Hardware Command and Configuration Tools
	6.7.1. fic(e)
	6.7.2. fgbtxconf

	Chapter 7. Felixcore Application and NetIO
	7.1. Operational Principles
	7.2. Configuration
	7.3. Monitoring
	7.3.1. FelixCore Native Monitoring
	7.3.2. Monitoring with felix-web-mon

	7.4. FelixCore Examples
	7.4.1. Tests without an FLX Card
	7.4.2. Tests with an FLX Card

	7.5. Connecting to a felixcore instance using NetIO tools
	7.6. Connecting to a felixcore instance using FATCAT
	7.7. Discovering E-links with the FELIX BUS system
	7.8. Debugging
	7.8.1. Using the FelixCore event tracing framework

	Chapter 8. Resources for Front-End Developers
	8.1. FELIX Firmware Modules for Front-end Users
	8.1.1. Downloading Firmware Source
	8.1.2. GBT Test Modules
	8.1.3. FULL Mode Test Modules

	8.2. General Hints and Tips
	8.2.1. Known Issues with GBTx
	8.2.2. Known Technical Requirements for FELIX Communication
	8.2.3. Examples of Design Best Practice based on Current Experience
	8.2.4. Frequently Asked Questions

	Appendix A: Setting up a TTC System for use with FELIX
	A.1. Tuning a TTC system
	A.2. Guide to TTC Channel B
	A.2.1. B channel decoding firmware
	A.2.2. Channel B decoding software

	A.3. Useful documents

	Appendix B: BNL-711 Technical Information
	B.1. User Jumper Map and Functional Specification
	B.1.1. J1
	B.1.2. J2
	B.1.3. J8
	B.1.4. JMP1
	B.1.5. JMP2
	B.1.6. JMP3
	B.1.7. JMPR1 & JMPR2

	B.2. MiniPOD Connectivity Map

	Appendix C: Guide to FELIX Data Structures
	Appendix D: Guide to Using FELIX with GBT-SCA
	D.1. Introduction
	D.2. Typical test setup
	D.3. Operation to set up an SCA e-link
	D.4. Low level operations with fec tools to configure and establish basic communication
	D.5. The integrated production system — Introduction
	D.6. The SCA software (SCA-SW), its demonstrators and the OPC-UA SCA Server
	D.6.1. SCA-SW library
	D.6.2. SCA OPC-UA server

	D.7. SCA References

	References

