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MiniBooNE

Studied:
νµ → νe oscillations, both modes

With:

Cerenkov detector, 950,000 liters of
mineral oil, 1520 phototubes in
12-meter diameter sphere

Found:

Observed data above 475 MeV are
consistent with expected
background

A low energy excess below this
energy
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Low Energy Excess

Excess events in 200 - 475 MeV
neutrino energy region found by
MiniBooNE.

Variety of interpretations by
many beyond the Standard
Model physics including...

3+N Sterile Neutrinos

...but could be misidentified νµ
→ can not distinguish e− and γ
signal

MicroBooNE detector proposed
to study even lower ν energy
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A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), “Event Excess in
the MiniBooNE Search for ν̄µ → ν̄e Oscillations”, Phys. Rev. Lett. 105,

181801 (2010)
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MicroBooNE - Detector
Specifications

170 ton liquid argon cryostat

Time Projection Chamber (TPC) with 3
wireplanes

32-40, 8-inch photomultiplier tubes

Will study

νe/ν̄e appearance

LAr

Genty (Nevis) REU Presentations August 1, 2013 5 / 31



LArSoft - Detector Simulation

LArSoft is a complete set of
simulation, reconstruction, and
analysis tools for liquid argon
detectors

Whole detector simulated
by GEANT4 (LArG4)

Neutrino beams simulated
by GENIE, all other
particles possible

Reconstruction chain
developed

Event display for three
wireplane, can investigate
reconstructed parameters
against truth... →
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LArSoft - Event Reconstruction

Reconstructing neutrino interactions inside MicroBooNE

Clustering

Hits are signal vs time information
from a calibrated Wire object and
looks for peaks that indicate real
energy deposition occurred

Clustering algorithms identify
reconstructed wire hits which are
correlated both spatially and
temporally

DBSCAN and Fuzzy Clustering
are two such algorithms

Energy

Total visible energy deposited on
TPC from e− showers

Raw Data

Hits

Clusters

Wires
Calibrated Data

2D/3D Tracks
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LArSoft - Cluster Studies

1 Generate νe events filter for
1e− + 1p final states,
simple event topology

2 I wrote a LArSoft module,
MCHitter, to calculate
purity and efficiency of
reconstructed clusters

3 Compare DBSCAN,
FuzzyCluster

⇒

Purity

Measures

How much of a cluster is composed
of a each true particle

If less than 1: clustering algorithm
could not distinguish true particle
hits from one another

Efficiency

Measures

How many of all hits the particle
generated are in a specific cluster

If less than 1: algorithm failed to
group the hits created by the
particle into a single cluster
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LArSoft - Cluster Studies - 1e− + 1p

PuritiesComb_fuzzy_cut

Entries  2897

Purity
0 0.2 0.4 0.6 0.8 1

F
re

q
u
e
n
c
y

0

0.05

0.1

0.15

0.2

0.25

0.3
PuritiesComb_fuzzy_cut

Entries  2897

PuritiesComb_fuzzy_cut
PuritiesComb_fuzzy_cut

Entries  2897

EfficienciesComb_fuzzy_cut

Entries  2897

Efficiency
0 0.2 0.4 0.6 0.8 1

F
re

q
u
e
n
c
y

0

0.05

0.1

0.15

0.2

0.25

0.3
EfficienciesComb_fuzzy_cut

Entries  2897

EfficienciesComb_fuzzy_cut
EfficienciesComb_fuzzy_cut

Entries  2897

PuritiesComb_db_cut

Entries  2747

Purity
0 0.2 0.4 0.6 0.8 1

F
re

q
u
e
n
c
y

0

0.05

0.1

0.15

0.2

0.25

0.3
PuritiesComb_db_cut

Entries  2747

PuritiesComb_db_cut

PuritiesComb_db_cut

Entries  2747

EfficienciesComb_db_cut

Entries  2747

Efficiency
0 0.2 0.4 0.6 0.8 1

F
re

q
u
e
n
c
y

0

0.05

0.1

0.15

0.2

0.25

0.3
EfficienciesComb_db_cut

Entries  2747

EfficienciesComb_db_cut

EfficienciesComb_db_cut

Entries  2747

Genty (Nevis) REU Presentations August 1, 2013 9 / 31



LArSoft - Energy Studies
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MicroBooNE Optical System

Phototube array

32-40, 8-inch photomultiplier array located behind TPC wireplanes will
collect Argon scintillation

The primary importance of the optical systems is for triggering on events

Optical information can also contribute to event reconstruction

I tested a R5912 8-inch PMT, similar to the ones used in MicroBooNE minus
the wavelength shifting coating and single coaxial input. Will be used to
study read out electronics
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PMT - Gain

Definition
Phototube gain is the ratio of secondary electrons collected on the anode to
primary electrons ejected from cathode → amplification factor

Procedure

1 Pulse PMT with blue LED @ 100 Hz

2 Record mean (µv ) peak height and
standard deviation (σv ) of output
voltages, and

∫
Vdt over 6000

triggers

3 Repeat for different input voltages

G : Gain
Ns : Number of secondary electrons
Np: Number of primary electrons

G ≡ Ns

Np

µv = CGNp

σv = CG
√

Np

⇒ Np = (µv/σv )2

and

Ns =

∫
Vdt

eR

⇒ G =

∫
Vdt

eR

(
σv
µv

)2
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PMT - Gain - Results I
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PMT - Gain - Results II
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PMT Splitter - Ringing - Setup

A current test of MicroBooNE’s optical system is called Bo. Bo is a liquid argon
test chamber for MicroBooNE photomultipliers, cold electronics, high voltage
system and much more.

An issue arose during electronics testing with the splitter used to split the HV
input from the PMT signal, signal reflection observed in shaper

R
C1 C2

L
Vin Vout

A simple circuit was used to study the PMT signal reflection between the
splitting capacitor C2 and the PMT base
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PMT Splitter - Ringing - Reflection

Why is there reflection?

Impedance differentials along the length of the circuit reflect EM signals

Splitting circuit, and 50 Ω cable are at different impendances.

Toy Circuit

Varying L controls the timescale of reflection

Varying C2 controls amplitude

No ringing is observed when:

τcircuit = RcableC2 � τtravel =
L

vsignal

**Much greater ∼ 3-5 times

vsignal = 1 foot/1.5 ns

L = 4→ 20 meters

C2 = 1 nF→ 10 nF
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PMT Splitter - Ringing - Tests
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τcircuit = 50 Ω · 1 nF = 50 ns

Short cable L = 4 m

τcircuit > τtravel = 4 m · 1.5 ns/foot ∼ 20 ns→ no ringing

Long cable L = 20 m

τcircuit ≯ τtravel = 10 m · 1.5 ns/foot ∼ 100 ns→ yes ringing
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PMT Splitter - Ringing - Tests II

Increase τcircuit by C2 → 10 nF
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PMT Splitter - Ringing - Results

Results

Bo circuit sees ringing in the shaper output when it shouldn’t, with same
parameters are test circuit

Bo circuit has another capacitor in series with the splitting capacitance
reducing effective capacitance

Bo circuit has high voltage across the splitting capacitance further reducing
capacitance

PMT 

+HV in 

Anode 
x1 

Anode 
x0.1 

10nF 
(2kV) 10k 500 

room temperature 

10nF 16k 
(2kV) 

GND 

10M 10k 

GND 

450 

10nF
| |

Capacitance in MicroBooNE splitter circuit used with Bo is being increased!
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PMT - Data Acquisition - Setup
Procedure

Use the controller module to trigger
a pulse generator

Feed the pulse to the RC circuit
built for the ringing tests. This
generates a narrow (few
nanosecond) PMT-like pulse of
variable charge depending on the
pulse amplitude.

Feed into the shaper and read out
through the FEM

Decoder & Analysis Module

pmtbaseline

- written with Kazu’s framework

Pedestal calculation and subtraction
per shaper channel

Calculate signal peak and area for
pulse recon.

Trigger Module

Pulse

Generator

RC

Circuit

Shaper

PC

Beam Gate

Ch. X

FEM
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PMT - Data Acquisition - Results

Pedestal mean and standard deviation calculated from the first 5 points of the
beam gate sample. Mean, RMS plotted versus FEM channel number
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PMT - Data Acquisition - Results II
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PMT - Data Acquisition - Results III

Pulse Amplitude
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PMT - Data Acquisition - Results IV

Amplitude
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PMT - Data Acquisition - Results V

Repeat over all shaper channels
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Backup Slides
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Producing Neutrinos - Fermilab Booster

Fermilab Booster Decay Pipe

50 m

Target and
Horn

A
bs
or
be
r

Dirt Detector

1 8 GeV protons produced in booster

2 Impinge on Beryllium target, magnetic horn focusses π± & K± depending on
neutrino mode

3 Mesons decay via → µ± + ν̄µ/νµ channel, some µ± → e± + ν̄µ/νµ + νe/ν̄e
4 Absorber filters charged leptons
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MicroBooNE - Advantages

Liquid argon TPCs have a low
energy resolution at a few MeV, far
below the hundreds of MeV
threshold on MiniBooNE, and will
be able to resolve the size of the
signal at lower energies.

MiniBooNE could not differentiate
between electrons and photons, a
TPC can “see” the difference → e−

connected to a primary vertex which
is singly ionizing, γ are doubly
ionizing and have a gap between
vertex

Detector R&D for larger TPC
experiments to search for CP
violation in neutrino sector TPC wireplanes: red and green “induction”

planes ±60◦ to vertical, Blue parallel
“collection” plane
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LArSoft - Cluster Studies

1 Generate single electron, muon and uniform flux CC νe events with singles.fcl
and GENIE. Filter for 1e− + 1p final states

2 Reconstruct clusters with modified uboone offline .fcl script
3 Feed to a module I wrote, MCHitter, to calculate purity and efficiency of

reconstructed clusters
4 Compare DBSCAN, FuzzyCluster

⇒

Genty (Nevis) REU Presentations August 1, 2013 30 / 31



LArSoft - Cluster Studies - Purity & Efficiency

Purity
=

# of hits from trackID in cluster

total # of hits in cluster

e−

π−

Measures

How much of a cluster is composed
of a each true particle

If less than 1: clustering algorithm
could not distinguish true particle
hits from one another

Efficiency
=

# of hits from trackID in cluster

total # of hits for that trackID

e−

π−

Measures

How many of all hits the particle
generated are in a specific cluster

If less than 1: algorithm failed to
group the hits created by the
particle into a single cluster
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