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Course policies
● Classes from 10:00 AM to 12:30 PM (10 min break at ~ 11:10 AM).

● Attendance record counts.

– Up to four absences

– Lateness or leaving early counts as half-absence 

– Send email notifications of all absences to shpattendance@columbia.edu.

● Please, no cell phones during class

● Please, ask questions!

● Lecture materials + Research Opportunities + Resources to become a 
particle physicist

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram

mailto:shpattendance@columbia.edu
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram
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Schedule
Month Day Lecture Teacher

January 27 Introduction Jose

February 3 History of Particle Physics Jose

10 Special Relativity Jose

17 Quantum Mechanics Jose

24 Experimental Methods Cris

March 3 The Standard Model - Overview Cris

10 The Standard Model - Limitations Cris

17 No classes, Columbia University spring break

24 Neutrino Theory Cris

31 No classes, Easter and Passover weekend

April 7 Neutrino Experiment Jose

14 LHC and Experiments Ines

21 No classes, SHP break

28 The Higgs Boson and Beyond Ines

May 5 Particle Cosmology Cris
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Special Relativity



5

Relativistic mechanics

 What’s wrong with classical mechanics?

 We will see that classical mechanics is only valid in the 
limiting case where v << c.
This is generally the case for everyday observables.

 However, this is not the case for Particle Physics since 
particles are traveling close to the speed of light in most 
of the times. 
In that case, classical mechanics fails to describe their 
behavior. 
To properly describe particle kinematics, and particle 
dynamics, we need relativistic mechanics.
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The notion of spacetime

 Spacetime in Newtonian 
mechanics (“the world, as 
experienced by us;” v << c):
 time is universal. 
 space can be cut into distinct 

“slices” at different moments 
in time. 

 particles must move forward 
in time, but can move through 
space in any direction. 

 all observers agree whether 
two events at different points 
in space occur at the same 
moment of time. 
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The notion of spacetime

 Spacetime in Special 
Relativity:
 time is local. 
 observers may not agree that 

two events occur at the same 
time. 

 there is no absolute notion of 
all space at a moment in 
time.

 the speed of light is constant, 
and cannot be surpassed. 

 every event “exists” within a 
set of allowed trajectories 
(light cone). 
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Basic concepts

 Event: something that 
occurs at a specified point 
in space at a specified time.

 Observer: someone who 
witnesses and can describe 
events (also known as a 
“frame of reference”)
 An observer describes events 

by using “standard” clocks 
and rulers which are at rest 
with respect to him/her. 



9

Reference frames

 What do we mean by “an observer is a frame of reference”?
 An observer O, in our sense 

of the word, sets up a 
Cartesian coordinate system 
for measuring positions (x,y,z).  
O then places synchronized 
clocks at every point in space 
to measure time. 

 Using the spatial coordinate 
system and clocks, O 
observes events and assigns 
each one a time stamp t 
and position (x,y,z). 
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Inertial observer

 Inertia: From Newton’s first law of motion: an object not 
subject to any net external force moves at a constant velocity.

 Inertial observer: isolated objects that are either at rest 
or move with constant velocity.  Hence, two inertial 
observers always move at constant velocity with respect to each 
other. 

 All laws of physics, e.g. Newton’s Second Law F=ma are valid for 
inertial observers.
 E.g. for an observer moving at constant velocity V with respect 

to some “fixed” point,
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Non-Inertial observer

 An observer undergoing 
acceleration is NOT inertial.

 Accelerating observers feel the 
influence of “pseudo-forces”, 
resulting in changes to Newton’s 
2nd Law

 Example: an observer on a merry-
go-round spinning at angular 
velocity  will perceive that 
straight-line trajectories bend, and 
conclude that objects in his/her 
reference frame are affected by a 
Coriolis force:
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Postulates of special 
relativity 
 In 1905, A. Einstein published two papers on special 

relativity, as well as a paper on the photoelectric effect 
(Nobel Prize 1921) and Brownian motion (the physics of 
particles suspended in a fluid). 

 All of Einstein’s conclusions in special relativity were based 
on only two simple postulates: 
(1) The laws of physics are the same in all inertial reference 
frames.  (Old idea, dates to Galileo). 
(2) All inertial observers measure the same speed c 
for light in a vacuum, independent of the motion of 
the light source.
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Postulates of special 
relativity

 The constancy of the speed 
of light is counter-intuitive, 
because this is not how 
“ordinary” objects behave. 

 Example: Imagine 
observing an oncoming car 
that moves at speed c.  
 We expect a moving 

observer to measure a 
different value for c than a 
stationary one.  According to 
SR, however, for light we 
always measure the same c, 
regardless of our motion!

?
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Constancy of speed of light

 The universality of c was first 
determined experimentally in 1887 
by A. Michelson and E. Morley. 

 At the time, it was believed that light 
propagated through a medium called 
the ether – physicists didn’t think 
light self-propagated through empty 
space. 

 Using an interferometer, Michelson 
and Morley expected to see the effect 
of changes in the speed of light 
relative to the ether velocity. 

By I, Cronholm144, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=2323500
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Constancy of speed of light

(Assuming the speed of light is not universal)

Earth’s motion through the ether creates an 
“ether wind” of speed v. Light moving 
“upwind” should have a speed c-v, and 
“downwind” c+v. By rotating the 
interferometer, we should observe a change in 
the light beams’ interference pattern due to 
the changing beam speed.
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Constancy of speed of light

 In fact, they saw no such effect during 
repeated trials over several years.  
The simplest way to explain the result 
is to assume that there is no ether, 
and c is constant in all inertial 
frames. 

In 1983, the meter was redefined 
in the International System of 
Units (SI) as the distance traveled 
by light in vacuum in 
1⁄299,792,458 of a second.

In 1983, the meter was redefined 
in the International System of 
Units (SI) as the distance traveled 
by light in vacuum in 
1⁄299,792,458 of a second.
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Homework: measure the speed of light!

● https://www.youtube.com/watch?v=kpB1wezpJeE

Become an experimental physicist!

● Repeat the experiment multiple times. How the values are distributed?

● Test multiple setups: what material works better? (chocolate, cheese, 
marshmallow, licorice...)

● Optimize methodology: what microwave settings work better?

https://www.youtube.com/watch?v=kpB1wezpJeE
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Implications of the postulates

 Einstein developed a series of “thought experiments” that illustrate the 
interesting consequences of the universality of c.  These can be 
summarized as: 
1) The illusion of simultaneity 
2) Time dilation 
3) Lorentz (length) contraction 
4) Velocity addition 
As we go through Einstein’s examples, keep in mind that these results 
may seem a little counterintuitive.  
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The relativity of simultaneity 

 An observer O calls two events simultaneous if they 
occur at the same time in his/her coordinates. 

 Interestingly, if the two events do not occur at the 
same position in frame O, then they will not appear 
simultaneous to a moving observer O’. 

 In other words, events that are simultaneous in one 
inertial system are not necessarily simultaneous in 
others.  Simultaneity is not an absolute concept, but 
one that depends on the state of motion of the 
observer. 

 Again, this follows from the fact that c is the same 
in all inertial frames…
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The relativity of simultaneity 

 A demonstration: Einstein’s thought experiment.  Flashed light from two ends of a 
moving boxcar is viewed by two observers.  One sits inside the boxcar, in the middle, 
and the other is stationary (outside, but also in the middle).  The lights are set up such 
that sources A and A’ flash at the same time, and B and B’ flash at the same time. 

 Suppose the flashes from A and B appear simultaneous to O. Do the A’ and B’ flashes 
appear simultaneous to O’?  
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The relativity of simultaneity 

 A demonstration: Einstein’s thought experiment.  Flashed light from two ends of a 
moving boxcar is viewed by two observers.  One sits inside the boxcar, in the middle, 
and the other is stationary (outside, but also in the middle).  The lights are set up such 
that sources A and A’ flash at the same time, and B and B’ flash at the same time. 

 This is not what Galilean/Newtonian physics predicts.

In this case, observer O’ sees the 
light from B’ first, since the flash 
emitted by the moving sources A’ and 
B’ must travel at the same speed as 
that emitted by A and B.
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Time dilation
 Time dilation reflects the fact that observers in different inertial frames 

always measure different time intervals between a pair of events. 
 Specifically, an observer O at rest 

will measure a longer elapsed time between 
a pair of events than an observer 
O’ in motion, i.e. moving clocks tick 
more slowly than stationary clocks! 

 The amount by which the observer at
rest sees the time interval “dilated” 
with respect to the measurement by 
O’ is given by the factor called the 
Lorentz factor  : 



24

Time dilation
 Another thought experiment
 Suppose an observer O’ is at 

rest in a moving vehicle.  She 
has a laser which she aims at a 
mirror on the ceiling.  

 According to O’, how long does it 
take the laser light to reach the 
ceiling of the car and bounce 
back to the ground?

?
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Time dilation
 An observer O outside the 

car sees that it takes time 
t for the laser light to hit 
the mirror and come back.  
In that time, the car will 
have moved a distance vt 
according to O.

 In other words, due to the 
motion of the vehicle, O 
sees that the laser light 
must leave the laser at an 
angle if it is to hit the 
mirror. 

 Show that t=t’
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Time dilation
 An observer O outside the 

car sees that it takes time 
t for the laser light to hit 
the mirror and come back.  
In that time, the car will 
have moved a distance vt 
according to O.

 In other words, due to the 
motion of the vehicle, O 
sees that the laser light 
must leave the laser at an 
angle if it is to hit the 
mirror. 

 Show that t=t’

Hint: Use right triangle
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Time dilation
 An observer O outside the 

car sees that it takes time 
t for the laser light to hit 
the mirror and come back.  
In that time, the car will 
have moved a distance vt 
according to O.

 In other words, due to the 
motion of the vehicle, O 
sees that the laser light 
must leave the laser at an 
angle if it is to hit the 
mirror. 

 Show that t=t’

Solution
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Time dilation in practice
 Recall our mention of cosmic ray 

air showers… 
 Relativistic nuclei strike the 

atmosphere, causing a huge 
cascade of high energy decay 
products. Many of these products 
are detected at Earth’s surface. 
However, most of them (like ’s 
and ’s) are very unstable and 
short-lived.  

 How do they make it to Earth’s 
surface? 
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Time dilation in practice
 Naively:
 The mean lifetime of the muon (in its rest frame) is 2.2 

microseconds. 
 Most air shower muons are generated high in the atmosphere 

(~8 km altitude).  If they travel at 99.9% of the speed of light c, 
should they make it to Earth from that altitude? 

?
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Time dilation in practice
 Naively:
 The mean lifetime of the muon (in its rest frame) is 2.2 

microseconds. 
 Most air shower muons are generated high in the atmosphere 

(~8 km altitude).  If they travel at 99.9% of the speed of light c, 
should they make it to Earth from that altitude? 

● This suggests that muons should not be able to make it to 
Earth’s surface.  But we detect them.  Where did the 
calculation go wrong?
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Time dilation in practice
 Accounting for relativity:
 In the lab (the stationary frame), the muon’s lifetime undergoes 

time dilation (a muon’s clock ticks slower…).  
Therefore, we have an effective lifetime to deal with:

 So the muon can certainly make it to the ground, on average, 
when we account for relativistic effects. 
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Cosmic ray experiments
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Transformations between reference frames

 Using the postulates of Special Relativity, we can start to work out how 
to transform coordinates between different inertial observers. 
 What is a transformation?  It’s a mathematical operation that takes 

us from one inertial observer’s coordinate system into another’s. 
 The set of possible transformations between inertial reference frames 

are called the Lorentz Transformations.  They form a group (in the 
mathematical sense of “group theory”). 

 The possible Lorentz Transformations:
 Translations
 Rotations
 Boosts.
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Translations (fixed displacements)

 In fixed translations, the two observers have different origins, 
but don’t move 
with respect to each other. 

 In this case, the observers’ 
clocks differ by a constant 
b0 and their positions 
differ by a constant 
vector b:
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Rotations (fixed)

 In fixed rotations, the two 
observers have a common 
origin and don’t move with 
respect to each other. 

 In this case, the observers’ 
coordinates are rotated 
with respect to each other. 

 The spatial transformation 
can be accomplished with 
a rotation matrix; measured 
times are the same:
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Fixed rotation example
 Consider two observers; they share a common origin and z-

axis, but the x-y plane of O' is rotated counterclockwise by 
an angle of  relative to O.  

 Their unit vectors are related by: 
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Boosts

 In boosts, the two frame axes 
are aligned, but the frames 
move at constant velocity 
with respect to each other. 

 The origins are chosen here to 
coincide at time t=0 in both 
frames. 

 The fact that the observers’ 
coordinates are not fixed 
relative to each other makes 
boosts more complex than 
translations and rotations. 

 It is in boosts that the 
constancy of the speed of light 
plays a big role. 
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Boosts: Galileo vs Lorentz
 Suppose we have two observers O and O’.  O is at rest, and O’ 

moves along the x direction with constant velocity v. 
 According to Galileo, the transformation between the coordinates 

of O and O’ is pretty simple; but according to Lorentz and 
Einstein, we get complicated expressions with many factors of c 
involved: the so-called Lorentz transformations. 

 If an event occurs at position (x,y,z) and time t for observer O, 
what are the spacetime coordinates (x',y',z') and t' measured by 
O’?  
 Galileo and Lorentz say the following: 

G
a
lil

e
o

Lo
re

n
tz

Note the Lorentz factor  in the Lorentz boosts.
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Lorentz (length) contraction

 Suppose a moving observer O’ puts a rigid “meter” stick along the x’ 
axis: one end is at x’=0, and the other at x’=L’. 

 Now an observer O at rest measures the length of the stick at time t=0, 
when the origins of O and O’ are aligned. What will O measure for x’?

 Using the first boost equation x’=(x-vt) at time t=0, it looks like the 
lengths are related by: 

 This is the Lorentz contraction: if an object has length l when it is at 
rest, then when it moves with speed v in a direction parallel to its length, 
an observer at rest will measure its length as the shorter value L/

(moving) (at rest)
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Lorentz contraction

 An example of Lorentz contraction in the case of 
collisions of two gold nuclei at the RHIC collider at 
Brookhaven Lab on Long Island: 

 In typical collisions (200 GeV) nuclei have a Lorentz 
factor of O(200).
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More fun: adding retardation
● The stick example to illustrate the Lorentz contraction and the illustration of 

the heavy ions colliding ignore the finite time the light needs to propagate 
from the objects to the eyes of the observer.

● You will never see anything as it is but as it was!

– Your own hand: a few nanoseconds ago.

– The Sun: 8 min ago.

– Proxima Centauri (the closest star to the Sun): 4.2 years ago.

● Exercise: draw how a relativistic square (v ~ c) looks coming at you!
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1-D case: relativistic rod coming at you 
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3-D case: relativistic lattice coming at you 
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Lorentz contraction... 
but does the stick actually look shorter?
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Apparent rotation

Examples from http://www.spacetimetravel.org/ueberblick/ueberblick1.html
by Ute Kraus and Corvin Zahn

http://www.spacetimetravel.org/ueberblick/ueberblick1.html
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Apparent rotation
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Relativistic Tübingen
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Velocity addition

 Finally, let’s briefly derive the rule for addition of relativistic 
velocities (we will need to use the boost equations…) 

 Suppose a particle is moving in the x direction at speed u’ with 
respect to observer O’.  What is its speed u with respect to O? 
 Since the particle travels a distance x = (x’+vt’)
 An “inverse” boost in time t=(t’+(v/c2)x’)
 The velocity in frame O is: 

where v is the relative velocity of the two inertial frames. 
 Since u=x/t and u’=x’/t’, we get the addition rule: 
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Four-vector notation
 This is a way to simplify notation for all we’ve talked about so far.
 Soon after Einstein published his papers on Special Relativity, 

Minkowski noticed that regarding t and (x,y,z) as simply four 
coordinates in a 4-D space (“space-time”) really simplified 
many calculations. 

 In this spirit, we can introduce a position-time four-vector x, 
where =0,1,2,3, as follows: 
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Lorentz boosts in four-vector notation

 In terms of the 4-vector x, a Lorentz boost along the 
x1(that is, the x) direction looks like: 

 As an exercise, you can show that the above equations 
recover the Lorentz boosts we discussed earlier. 

 FYI, this set of equations also has a very nice and 
useful matrix form…
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Lorentz boosts in matrix form

 Using 4-vectors, we can write the Lorentz boost 
transformation as a matrix equation

 Looks very similar to the 3-D rotation!  
Mathematically, boosts and rotations are actually 
very close “cousins”.  We can understand this 
connection using the ideas of group theory. 
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Invariant quantities

 The utility of 4-vectors comes in when we start 
to talk about invariant quantities. 

 Definition: a quantity is called invariant if it has 
the same value in any inertial system. 

 RECALL: the laws of physics are always the 
same in any inertial coordinate system (this is 
the definition of an inertial observer).  
Therefore, these laws are invariants, in a sense. 

 The identification of invariants in a system is 
often the best way to understand its physical 
behavior.
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Example of invariant quantity

 Think of a 3-vector (x,y,z).  An example of an invariant is its 
square magnitude, r2=x2+y2+z2, whose value does not change 
under coordinate rotations.

 Consider a rotation about the z-axis:
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4-vector scalar product 

 The quantity s2, given by: 

 is called the scalar product of x with itself. It is an invariant, 
i.e., it has the same value in any coordinate system 
(just like any scalar).  This spacetime interval is often called 
the proper length. 

 To denote the scalar product of two arbitrary 4-vectors a and 
b, it is convenient to drop the Greek index and just write:

 In this case, the 4-vectors a and b are distinguished from their 
spatial 3-vector components by the little arrow overbar.
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4-vector scalar product 

 Terminology: any arbitrary 4-vector a can be 
classified by the sign of its scalar product a2: 

1) If a2>0, a is called timelike because the a0 
component dominates the scalar product. 

2) If a2<0, a is called spacelike because the 
spatial components dominate a2. 

3) If a2=0, a is called lightlike or null because, as 
with photons, the time and space components of 
a cancel.
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The light cone, revisited
 A set of points all connected to 

a single event E by lines 
moving at the speed of light is 
called the light cone. 

 The set of points inside the 
light cone are timelike 
separated from E. 

 The set of points outside the 
cone are spacelike separated 
from E. 

 Points outside the cone cannot 
causally affect (or be affected 
by) the event E; signals from 
these points cannot make it to 
the event. 

Past and future light cones for an event E, with z 
dimension suppressed, and units defined such 
that c=1. 

y
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Why is relativity so prevalent and 
fundamental in this field?

Back to particle physics…
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SR in particle physics

 We will talk about relativistic kinematics –the physics of 
particle collisions and decays. 

 In the context of what we have discussed so far, we 
start to think of particles as moving “observers”, and 
scientists as stationary observers.   
 The reference frame of particles is often called the 

“particle rest frame”, while the frame in which the 
scientist sits at rest, studying the particle, is called the “lab 
frame”. 

 To begin, let’s define (not derive) the notions of 
relativistic energy, momentum, and the mass-energy 
relation.  These should reduce to classical expressions 
when velocities are very low (classical limit).

We will be applying the algebra of 4-vectors to particle physics. 
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Relativistic momentum

 The relativistic momentum (a three-vector) of a 
particle is similar to the momentum you’re familiar 
with, except for one of those factors of :

 The relativistic momentum agrees with the more 
familiar expression in the so-called “classical regime” 
where v is a small fraction of c.  In this case:

(Taylor expansion)
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Relativistic energy

 The relativistic energy (excluding particle interactions) is quite a bit 
different from the classical expression:

 
 When the particle velocity v is much smaller than c, we can expand the 

denominator (Taylor expansion again) to get:  

 The second term here corresponds to the classical kinetic energy, 
while the leading term is a constant.  (This is not a contradiction in 
the classical limit, because in classical mechanics, we can offset 
particle energies by arbitrary amounts.) 

 The constant term, which survives even when v=0, is called the rest 
energy of the particle; it is Einstein’s famous equation:
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Energy-momentum four-vector

 It is convenient to combine the relativistic energy and momentum 
into a single 4-vector called the four-momentum. 

 The four-momentum, denoted p or just p, is defined by:  
 The scalar product of the four-momentum with itself gives us an 

invariant that depends on the mass of the particle under study.  
Squaring p yields the famous relativistic energy-momentum 
relation (also called the mass-shell formula):

The Lorentz-invariant 
quantity that results 
from squaring 
4-momentum is called 
the invariant mass.
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Classical vs. relativistic mass shell

 In classical physics, the mass-shell relation is 
quadratic in the momentum: 

 This is called the mass-shell formula 
because if one plots E vs. p in two 
dimensions, the function looks like a 
parabolic shell(!). 

 JARGON: Particles that obey the 
relativistic mass-shell relation are 
said to be “on mass shell”:
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Classical vs. relativistic mass shell

 The relativistic mass shell, 
due to the presence of the 
rest energy, looks like a 
hyperbola.

 
 Unlike classical mechanics, 

zero-mass particles are 
allowed if they travel at the 
speed of light. 

 In the case of zero mass, the 
mass-shell relation reduces 
to: 

Relativistic mass shell 
for 1D motion (m≠0). 

Relativistic mass shell 
for 1D motion  (m=0) 
(boundary of the light 
cone).
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Collisions and kinematics

 Why have we introduced energy and momentum?  
 These quantities are conserved in any physical process (true in any 

inertial frame!).

 

 The cleanest application of these conservation laws in 
particle physics is to collisions. 

 The collisions we will discuss are somewhat idealized; we 
essentially treat particles like billiard balls, ignoring external 
forces like gravity or electromagnetic interactions. 

 Is this a good approximation?  Well, if the collisions occur fast 
enough, we can ignore the effects of external interactions 
(these make the calculation much harder)! 
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Classical vs. relativistic collisions 

 In classical collisions, recall the usual conservation laws: 
1) Mass is conserved; 
2) Momentum is conserved; 
3) Kinetic energy may or may not be conserved.  

 The types of collisions that occur classically include: 

1) Sticky: kinetic energy decreases 
2) Explosive: kinetic energy increases 
3) Elastic: kinetic energy is conserved.
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Classical vs. relativistic collisions 

 In classical relativistic collisions, recall the usual 
conservation laws: 
1) Mass Relativistic energy is conserved; 
2) Momentum Relativistic momentum is conserved; 
3) Kinetic energy may or may not be conserved.  

 The types of collisions that occur classically include: 

1) Sticky: kinetic energy decreases, rest energy and mass 
increase.  
2) Explosive: kinetic energy increases, rest energy and 
mass decrease. 
3) Elastic: kinetic energy is conserved, rest energy and 
mass are conserved too.

*Note: conservation of energy and momentum can be 
encompassed into conservation of four-momentum. 
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Inelastic collisions

 There is a difference in interpretation between classical 
and relativistic inelastic collisions. 

 In the classical case, inelastic collisions mean that kinetic 
energy is converted into “internal energy” in the system 
(e.g., heat). 

 In special relativity, we say that the kinetic energy goes 
into rest energy. 

 Is there a contradiction?  No, because the energy-mass 
relation E=mc2 tells us that all “internal” forms of energy 
are manifested in the rest energy of an object.  (In other 
words, hot objects weigh more than cold objects.  But 
this is not a measurable effect even on the atomic scale!)
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Mass-energy equivalence
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Summary
 Lorentz boosts to and from a moving 

reference frame: 

 Relativistic momentum and energy: 

relativistic momentum
relativistic energy
rest energy
relativistic kinetic energy
mass-shell relation
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