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Course policies
Classes from 10:00 AM to 12:30 PM (10 min break at ~ 11:10 AM).
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Special Relativity



Relativistic mechanics

What's wrong with classical mechanics?

We will see that classical mechanics is only valid in the
limiting case where v << .

This is generally the case for everyday observables.

However, this is not the case for Particle Physics since
particles are traveling close to the speed of light in most
of the times.

In that case, classical mechanics fails to describe their
behavior.

To properly describe particle kinematics, and particle
dynamics, we need relativistic mechanics.



The notion of spacetime

' ' i Particle “worldline”
Spacetime in Newtonian article “woridine

mechanics (“the world, as
experienced by us;” v << C):
time is universal.

space can be cut into distinct
“slices” at different moments
in time.

particles must move forward
in time, but can move through
space in any direction.

all observers agree whether
two events at different points
in space occur at the same
moment of time.

;
o
:
3
w)
g
E
S
2
2
.%
8
&
E
£

Space at a fixed time
(one dimension
suppressed)




The notion of spacetime

Spacetime in Special Particle “worldiine”
Relativity:

time is local.

observers may not agree that

two events occur at the same
time.

there is no absolute notion of
all space at a moment in
time.

the speed of light is constant,
and cannot be surpassed.

every event “exists” within a
set of allowed trajectories
(light cone).
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Basic concepts

Event: something that Particle “woridiine”
occurs at a specified point
In space at a specified time.

Observer: someone who
witnesses and can describe
events (also known as a
“frame of reference”)
An observer describes events
by using “standard” clocks

and rulers which are at rest
with respect to him/her.
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Reference frames

What do we mean by “an observer is a frame of reference”?

An observer O, in our sense
of the word, sets up a
Cartesian coordinate system Reference frame of observer 0

for measuring positions (x,y,z). An event, in this case a flashing

O then places synchronized light, occurs at (tx.y,2)
with respect to observer 0.

clocks at every point in space
to measure time.

Using the spatial coordinate
system and clocks, O
observes events and assigns
each one a time stamp t
and position (x,y,z2).




Inertial observer

Inertia:

Inertial observer: isolated objects that are either at rest
or move with constant velocity. Hence, two inertial
observers always move at constant velocity with respect to each

other.
All laws of physics, e.g. Newton’s Second Law are valid for
inertial observers.
E.g. for an observer moving at constant velocity V with respect
to some “fixed” point,

/(D)= uD-V

F=md=m——=

Av(h _ AMD-V)_ A _
Al Al Al

= ma
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Non-lnertial observer

An observer undergoing
acceleration is NOT inertial.

Accelerating observers feel the

influence of “pseudo-forces”,

resulting in changes to Newton’s |

2nd Law alh Fi: = Fanrig

Example: an observer on a merry- »
go-round spinning at angular
velocity o will perceive that
straight-line trajectories bend, and
conclude that objects in his/her
reference frame are affected by a
Coriolis force:

Merry-go-round’s rotating frame of reference

F= —2/7(6{»( 17)
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Postulates of special
relativity

In 1905, A. Einstein published two papers on special
relativity, as well as a paper on the photoelectric effect
(Nobel Prize 1921) and Brownian motion (the physics of
particles suspended in a fluid).

All of Einstein’s conclusions in special relativity were based

on only two simple postulates:
(1) The laws of physics are the same in all inertial reference

frames. (Old idea, dates to Galileo).
(2) All inertial observers measure the same speed ¢
for light in a vacuum, independent of the motion of

the light source.

12



Postulates of special
relativity

The constancy of the speed
of light is counter-intuitive,
because this is not how _ |
“ordinary” objects behave. ppperent automon e velodty

Example: Imagine
observing an oncoming car
that moves at speed c.

We expect a moving
Observer to measure a What apparent automobile velocity
) should 0'measure in this case?

different value for c than a

stationary one. According to
SR, however, for light we
always measure the same c,
regardless of our motion!

What we expect using Galilean
velocity addition...

a "spherical® car




Postulates of special
relativity

The constancy of the speed
of light is counter-intuitive,
because this is not how _ |
“ordinary” objects behave. ppperent automon e velodty

Example: Imagine
observing an oncoming car
that moves at speed c.

We expect a moving
Observer to measure a What apparent automobile velocity
) should 0'measure in this case?

different value for c than a

stationary one. According to Answer: ¢ + V

SR, however, for light we
always measure the same c,
regardless of our motion!

What we expect using Galilean
velocity addition...

a "spherical® car




Constancy of speed of light

The universality of ¢ was first
determined experimentally in 1887 o L
by A. Michelson and E. Morley. Lo + % . Luminiferous aether
At the time, it was believed that light | * -

propagated through a medium called o
the ether - physicists didn’t think
light self-propagated through empty
space.

Sun
Using an interferometer, Michelson

and Morley expected to see the effect
of changes in the speed of light |
relative to the ether velocity.

VIV Y T P YYYYYYyYwy
By I, Cronholm144, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=2323500
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Constancy of speed of light

Michelson Interferometer

(Assuming the speed of light is not universal)

Earth’s motion through the ether creates an
“ether wind” of speed v. Light moving
“upwind” should have a speed c-v, and
“downwind” C+V. By rotating the
interferometer, we should observe a change in
the light beams’ interference pattern due to
the changing beam speed.

- Fixed spacing ~

Hy (one fringe) }J;

(a) (b)

Figure 1.6 Interference fringe schematic showing (a) fringes before rotation and
(b) expected fringe shift after a rotation of the interferometer by 90°.

mirror M,

Ether “wind"

Beam splitter

coherent
light source mirror M,

Observer sees an

/ interference pattern

telescope
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Constancy of speed of light

Michelson Interferometer

In fact, they saw no such effect during —
repeated trials over several years.
The simplest way to explain the result
is to assume that there is no ether,

and Q

coherent
light source mirror M,

Ether “wind"

Beam splitter

Observer sees an

/ interference pattern

telescope
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Homework: measure the speed of light!

https://www.youtube.com/watch?v=kpBlwezpJeE

Become an experimental physicist!
Repeat the experiment multiple times. How the values are distributed?

Test multiple setups: what material works better? (chocolate, cheese,
marshmallow, licorice...)

Optimize methodology: what microwave settings work better?

18


https://www.youtube.com/watch?v=kpB1wezpJeE

Implications of the postulates

Einstein developed a series of “thought experiments” that illustrate the
interesting consequences of the universality of c. These can be
summarized as:

As we go through Einstein’s examples, keep in mind that these results
may seem a little counterintuitive.

19



The relativity of simultaneity

An observer O calls two events simultaneous if they
occur at the same time in his/her coordinates.

Interestingly, if the two events do not occur at the
same position in frame O, then they will not appear
simultaneous to a moving observer O’.

In other words, events that are simultaneous in one
Inertial system are not necessarily simultaneous in
others. Simultaneity is not an absolute concept, but
one that depends on the state of motion of the
observer.

Again, this follows from the fact that c is the same
in all inertial frames...

20



The relativity of simultaneity

A demonstration: Einstein’s thought experiment. Flashed light from two ends of a
moving boxcar is viewed by two observers. One sits inside the boxcar, in the middle,
and the other is stationary (outside, but also in the middle). The lights are set up such
that sources A and A’ flash at the same time, and B and B’ flash at the same time.

v (uniform)

Suppose the flashes from A and B appear simultaneous to O. Do the A’ and B’ flashes
appear simultaneous to O'?

21



The relativity of simultaneity

A demonstration: Einstein’s thought experiment. Flashed light from two ends of a
moving boxcar is viewed by two observers. One sits inside the boxcar, in the middle,
and the other is stationary (outside, but also in the middle). The lights are set up such
that sources A and A’ flash at the same time, and B and B’ flash at the same time.

v (uniform)

In this case, observer O’ sees the
light from B’ first, since the flash
emitted by the moving sources A’ and
B’ must travel at the same speed as
that emitted by A and B.

This is not what Galilean/Newtonian physics predicts.

22



Time dilation

Time dilation reflects the fact that observers in different inertial frames
always measure different time intervals between a pair of events.

Specifically, an observer O at rest

will measure a longer elapsed time between
a pair of events than an observer

O’ in motion, i.e. moving clocks tick
more slowly than stationary clocks!

The amount by which the observer at
rest sees the time interval “dilated”
with respect to the measurement by
O’ is given by the factor called the
Lorentz factor v:

Al
Af=
JI- P/ ¢

=yAl

Y

[
o
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J1=(v/c)>
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Time dilation

= Another thought experiment

= Suppose an observer O’ is at
rest in a moving vehicle. She
has a laser which she aims at a
mirror on the ceiling.

= According to O’, how long does it
take the laser light to reach the
ceiling of the car and bounce
back to the ground?

24



Time dilation

= Another thought experiment

= Suppose an observer O’ is at
rest in a moving vehicle. She
has a laser which she aims at a
mirror on the ceiling.

= According to O’, how long does it
take the laser light to reach the
ceiling of the car and bounce
back to the ground?

_ distance traveled 24
speed c

Al
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Time dilation

An observer O outside the
car sees that it takes time
At for the laser light to hit
the mirror and come back.
In that time, the car will
have moved a distance vAt
according to O.

In other words, due to the
motion of the vehicle, O
sees that the laser light
must leave the laser at an
angle if it is to hit the
mirror.

Show that At=yAt’

26



Time dilation

An observer O outside the
car sees that it takes time
At for the laser light to hit
the mirror and come back.
In that time, the car will
have moved a distance vAt
according to O.

In other words, due to the
motion of the vehicle, O
sees that the laser light
must leave the laser at an
angle if it is to hit the
mirror.

Show that At=yAt’




Time dilation

An observer O outside the
car sees that it takes time
At for the laser light to hit
the mirror and come back.
In that time, the car will
have moved a distance vAt
according to O.

In other words, due to the
motion of the vehicle, O
sees that the laser light
must leave the laser at an
angle if it is to hit the
mirror.

2d/ ¢

Show that At=yAt’

7 —|/2 AT

Al=yAT



Time dilation In practice

Recall our mention of cosmic ray
air showers... Top of atmosphere

Relativistic nuclei strike the
atmosphere, causing a huge
cascade of high energy decay
products. Many of these products
are detected at Earth’s surface.
However, most of them (like n’s
and u’'s) are very unstable and
short-lived.

How do they make it to Earth’s
surface?

Extensive air shower development.

29



Time dilation In practice

Naively:
The mean lifetime of the muon (in its rest frame) is 2.2
microseconds.

Most air shower muons are generated high in the atmosphere
(~8 km altitude). If they travel at 99.9% of the speed of light c

should they make it to Earth from that altitude?

’

30



Time dilation In practice

Naively:
The mean lifetime of the muon (in its rest frame) is 2.2
microseconds.

Most air shower muons are generated high in the atmosphere
(~8 km altitude). If they travel at 99.9% of the speed of light c
should they make it to Earth from that altitude?

Muon range = (lifetime)x (speed)
=(2.2x107° 8)x (0.999¢)
~ 660 m

* This suggests that muons should not be able to make it to
Earth’'s surface. But we detect them. Where did the
calculation go wrong?

’
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Time dilation In practice

Accounting for relativity:

In the lab (the stationary frame), the muon’s lifetime undergoes
time dilation (a muon’s clock ticks slower...).
Therefore, we have an effective lifetime to deal with:

Muon range = yx (lifetime)x (speed)

{ 1 }. (2210 s)x (0.999¢)

J1-(0.999¢/ ¢)?
~14.7 km

So the muon can certainly make it to the ground, on average,
when we account for relativistic effects.

32



Cosmic ray experiments

33



Transformations between reference frames

Using the postulates of Special Relativity, we can start to work out how
to transform coordinates between different inertial observers.

What is a transformation? It's a mathematical operation that takes
us from one inertial observer’s coordinate system into another’s.

The set of possible transformations between inertial reference frames

are called the Lorentz Transformations. They form a group (in the
mathematical sense of “group theory”).

The possible Lorentz Transformations:
Translations

Rotations
Boosts.

34



Translations (fixed displacements)

In fixed translations, the two observers have different origins,

but don’t move
with respect to each other.

In this case, the observers’
clocks differ by a constant
bo and their positions
differ by a constant

vector b:

—

X=X—Db
r=1-h




Rotations (fixed)

In fixed rotations, the two
observers have a common
origin and don’t move with
respect to each other.

In this case, the observers’
coordinates are rotated
with respect to each other.

The spatial transformation
can be accomplished with

a rotation matrix; measured
times are the same:

X=R X
f=t

One coordinate system rotated
with respect to another.




Fixed rotation example

Consider two observers; they share a common origin and z-
axis, but the x-y plane of O' is rotated counterclockwise by

an angle of ¢ relative to O.
Their unit vectors are related by:

X cos ¢ sin ¢ 0Y X

¥ |=| —sing cos ¢ 0171,

2 0 0 1)z
or

X= Xcos¢+ Jsing

V=—Xsind+ Jcos¢

2=2

A rotation about the z axis. The unit vectors of
the rotated coordinates are related to the original
coordinates by a rotation matrix.




Boosts

In boosts, the two frame axes
are aligned, but the frames
move at constant velocity
with respect to each other.

The origins are chosen here to
coincide at time t=0 in both
frames.

The fact that the observers’
coordinates are not fixed
relative to each other makes
boosts more complex than
translations and rotations.

It is in boosts that the
constancy of the speed of light
plays a big role.

Observers’ axes are aligned, but one moves
at constant velocity vwith respect to the other.




Boosts: Galileo vs Lorentz

Suppose we have two observers O and O'. O is at rest, and O’
moves along the x direction with constant velocity v.

According to Galileo, the transformation between the coordinates
of O and O’ is pretty simple; but according to Lorentz and
Einstein, we get complicated expressions with many factors of c
Involved: the so-called Lorentz transformations.

If an event occurs at position (x,y,z) and time t for observer O,
what are the spacetime coordinates (x',y',z') and t' measured by
O’?

Galileo and Lorentz say the following:

X=Xx— vt X=y(x-vi)

y=y y=y B 1 S
> Y = —l

Z=17 7=z V-V /¢

r=t r=y(t—vx/ &)

Note the Lorentz factor y in the Lorentz boosts.
39



Lorentz (length) contraction

Suppose a moving observer O’ puts a rigid “meter” stick along the x’
axis: one end is at x’=0, and the other at x'=L".

Now an observer O at rest measures the length of the stick at time t=0,
when the origins of O and O’ are aligned. What will O measure for x'?

Using the first boost equation x'=y(x-vt) at time t=0, it looks like the
lengths are related by:

['=vy L
L=L"]y

This is the Lorentz contraction: if an object has length I when it is at
rest, then when it moves with speed v in a direction parallel to its length,
an observer at rest will measure its length as the shorter value L/y.

40



Lorentz contraction

An example of Lorentz contraction in the case of
collisions of two gold nuclei at the RHIC collider at
Brookhaven Lab on Long Island:

In typical collisions (200 GeV) nuclei have a Lorentz
factor of O(200).

41



More fun: adding retardation

The stick example to illustrate the Lorentz contraction and the illustration of
the heavy ions colliding ignore the finite time the light needs to propagate
from the objects to the eyes of the observer.

You will never see anything as it is but as it was!
- Your own hand: a few nanoseconds ago.
- The Sun: 8 min ago.
- Proxima Centauri (the closest star to the Sun): 4.2 years ago.

Exercise: draw how a relativistic square (v ~ c¢) looks coming at you!

42



1-D case: relativistic rod coming at you

CH mera

rod-089 ¢
Lte Kraus (2003), www. spacetimetravel. ong
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cubic lattice - 0.9 ¢
te Kraus (2005), www.spacelimeatravel.org
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Lorentz contraction...
but does the stick actually look shorter?

ammsssss—— st length

- contracted length

CEMmEe =

rod-089 ¢
Lte Kraus (2003), www. spacetimetravel. ong
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Apparent rotation

Kamera Kamera kamera
» '_I »
_Iﬂ"#, Hi'.'.‘: i
- / '
."
B
1 1
—_— — —
kY W ¥

Fig. 6: Why we may see the back side of a cube if the cube is moving fast enough. The photon velocity (blue arrow) has twao
components (grey), a horizontal one (towards the cube) and a vertical one. If the horizontal component i smaller than the velocity »
of the cube (black), the photon escapes because the cube outruns the photon and so0 moves out of the way fast enough. In this
figure the cube moves at 95% of the speed of light and, correzpondingly, iz contracted in the direction of mation to 31% of its rest
length. Thin solid lines mark the distance already covered by the light ray, dotted lines indicate the remainder of the light path.

Examples from http://www.spacetimetravel.org/ueberblick/ueberblickl.html
by Ute Kraus and Corvin Zahn
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http://www.spacetimetravel.org/ueberblick/ueberblick1.html

ﬁ-

dice - 09c¢c

Lite Kraus (2005), www.spacetimetravel.
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Velocity addition

Finally, let’s briefly derive the rule for addition of relativistic
velocities (we will need to use the boost equations...)

Suppose a particle is moving in the x direction at speed u’ with
respect to observer O’. What is its speed u with respect to O?

Since the particle travels a distance Ax = y(AX'+VAt’)
An “inverse” boost in time At=y (At'+(v/c2) AX’)
The velocity in frame O is:

Ax  AX+VAr  (AX/Al)+V
At AP+(V/ EAX 1+ (V/ E)AX/ AT

where v is the relative velocity of the two inertial frames.
Since u=Ax/At and u'=Ax’/At’, we get the addition rule:
u+v

lrwvey

compareto u=U+v

49



Four-vector notation

This is a way to simplify notation for all we've talked about so far.

Soon after Einstein published his papers on Special Relativity,
Minkowski noticed that regarding t and (x,y,z) as simply four

coordinates in a 4-D space (“space-time”) really simplified
many calculations.

In this spirit, we can introduce a position-time four-vector x,
where u=0,1,2,3, as follows:

X=ct, X=x X=y X=z

50



Lorentz boosts in four-vector notation

In terms of the 4-vector x», a Lorentz boost along the
x1(that is, the x) direction looks like:

X'=y(X = BX)
X'=y(X - BX
" P )_., where B=V/C
X=X
X'=x

As an exercise, you can show that the above equations
recover the Lorentz boosts we discussed earlier.

FYI, this set of equations also has a very nice and
useful matrix form...
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Lorentz boosts in matrix form

Using 4-vectors, we can write the Lorentz boost
transformation as a matrix equation

(XO'\ 4 % _,yﬁ 0 0\()(0\
X' | | -8 % 0 O0|x
X'l ] o 0 1 0| x
') L0 0 0 1AxX)

Looks very similar to the 3-D rotation!
Mathematically, boosts and rotations are actually
very close “cousins”. We can understand this
connection using the ideas of group theory.
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Invariant quantities

The utility of 4-vectors comes in when we start
to talk about invariant quantities.

RECALL: the laws of physics are always the
same in any inertial coordinate system (this is
the definition of an inertial observer).
Therefore, these laws are invariants, in a sense.

The identification of invariants in a system is
often the best way to understand its physical
behavior.
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Example of invariant quantity

Think of a 3-vector (x,y,z). An example of an invariant is its

square magnitude, r2=x2+y2+z2, whose value does not change
under coordinate rotations.

Consider a rotation about the z-axis:

X CosS @ singp 0YX
VY |=|—-sme cosep Ofy
Z 0 0 1)z

r’= x4y +2°
= (Xcos@+ ysin@)” + (—Xsinp + ycosp)® + Z°

=(cos’@+sin’ @)X + )+ Z°
=r




4-vector scalar product

The quantity As2, given by:
AS =XX XX =X -XX=XX—-%X

—(ctf - ¥
Is called the scalar product of x» with itself. It is an invariant,
l.e., it has the same value in any coordinate system
(Just like any scalar). This spacetime interval is often called

the proper length.
To denote the scalar product of two arbitrary 4-vectors a» and
by, it Is convenient to drop the Greek index and just write:

ab=at"—-a b

In this case, the 4-vectors a and b are distinguished from their
spatial 3-vector components by the little arrow overbar.
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4-vector scalar product

Terminology: any arbitrary 4-vector ar can be
classified by the sign of its scalar product az:

1) If a2>0, ar is called timelike because the ao
component dominates the scalar product.

2) If a2<0, an is called spacelike because the
spatial components dominate az.

3) If a2=0, aw is called lightlike or null because, as
with photons, the time and space components of
ar cancel.
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The light cone, revisited

= A set of points all connected to |~
a single event E by lines
moving at the speed of light is ;
called the light cone.

2 The set of points inside the
light cone are timelike
separated from E.

© The set of points outside the
cone are spacelike separated
from E.

© Points outside the cone cannot
causally affect (or be affected
by) the event E; signhals from X

. . 14

these points cannot make it to /

the event. b

time

77

7
Past and future light cones for an event E, with z
dimension suppressed, and units defined sugh
that c=1.



Back to particle physics...



SR In particle physics

We will talk about relativistic kinematics -the physics of
particle collisions and decays.

In the context of what we have discussed so far, we
start to think of particles as moving “observers”, and
scientists as stationary observers.

The reference frame of particles is often called the
“particle rest frame”, while the frame in which the
scientist sits at rest, studying the particle, is called the “lab

frame”.
To begin, let’s define (not derive) the notions of
relativistic energy, momentum, and the mass-energy
relation. These should reduce to classical expressions
when velocities are very low (classical limit).

We will be applying the algebra of 4-vectors to particle physics. >



Relativistic momentum

The relativistic momentum (a three-vector) of a
particle is similar to the momentum you're familiar
with, except for one of those factors of v:

mv
V- 12/ ¢

The relativistic momentum agrees with the more
familiar expression in the so-called “classical regime”
where v is a small fraction of c. In this case:

P=ymv=

(. 1V ~
D= mv{l+202+...]~ mv

(Taylor expansion)
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Relativistic energy

The relativistic energy (excluding particle interactions) is quite a bit
different from the classical expression:

mc*
J1- 12/ ¢

When the particle velocity v is much smaller than ¢, we can expand the
denominator (Taylor expansion again) to get:
v

V2+3'/1+ —mé+imi+>ml+
2¢° 8¢* 2 8 ¢

The second term here corresponds to the classical kinetic energy,
while the leading term is a constant. (This is not a contradiction in
the classical limit, because in classical mechanics, we can offset
particle energies by arbitrary amounts.)

The constant term, which survives even when v=0, is called the rest
energy of the particle; it is Einstein’s famous equation:
Erest = mcz

E=vymc* =

E= mcz[l+
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Energy-momentum four-vector

It is convenient to combine the relativistic energy and momentum
into a single 4-vector called the four-momentum.

P = [é 77)= (yme,ymv)

The four-momentum, denoted p» or just p, is defined by:

The scalar product of the four-momentum with itself gives us an
Invariant that depends on the mass of the particle under study.

Squaring p~ yields the famous relativistic energy-momentum
relation (also called the mass-shell formula):
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Classical vs. relativistic mass shell

“In classical physics, the mass-shell relation is
quadratic in the momentum:

P _\plep’+p))
2m 2m

O This is called the mass-shell formula
because if one plots E vs. p in two
dimensions, the function looks like a
parabolic shell(!).

= JARGON: Particles that obey the
relativistic mass-shell relation are

™ i A point "on the
said to be “on mass shell”: T | el
2 Px N
E= | &+ et

Classical mass shell relation for a 2D system.



Classical vs. relativistic mass shell

The relativistic mass shell,
due to the presence of the
rest energy, looks like a
hyperbola.

Relativistic mass shell
for 1D motion (m=0).

/ E
Unlike classical mechanics,
zero-mass particles are

allowed if they travel at the
speed of light.

In the case of zero mass, the /

mass-shell relation reduces Relativistic mass shell

to: for 1D motion (m=0)
3= ‘ D|6‘ (boundary of the light

cone). o



Collisions and kinematics

Why have we introduced energy and momentum?

The cleanest application of these conservation laws in
particle physics is to collisions.

The collisions we will discuss are somewhat idealized; we
essentially treat particles like billiard balls, ignoring external
forces like gravity or electromagnetic interactions.

Is this a good approximation? Well, if the collisions occur fast
enough, we can ignore the effects of external interactions
(these make the calculation much harder)!
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Classical vs. relativistic collisions

In classical collisions, recall the usual conservation laws:
1) Mass is conserved,;

2) Momentum is conserved;

3) Kinetic energy may or may not be conserved.

The types of collisions that occur classically include:

1) Sticky: kinetic energy decreases
2) Explosive: kinetic energy increases
3) Elastic: kinetic energy is conserved.
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Classical vs. relativistic collisions

In elassteat relativistic collisions, recall the usual
conservation laws:

1) Mass Relativistic energy is conserved;

2) Mementum Relativistic momentum is conserved;
3) Kinetic energy may or may not be conserved.

The types of collisions that occur classically include:

1) Sticky: kinetic energy decreases, rest energy and mass
Increase.

2) Explosive: kinetic energy increases, rest energy and
mass decrease.

3) Elastic: kinetic energy is conserved, rest energy and
mass are conserved too.
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Inelastic collisions

There is a difference in interpretation between classical
and relativistic inelastic collisions.

In the classical case, inelastic collisions mean that kinetic
energy is converted into “internal energy” in the system
(e.g., heat).

In special relativity, we say that the kinetic energy goes
into rest enerqgy.

Is there a contradiction? No, because the energy-mass
relation E=mcz tells us that all “internal” forms of energy
are manifested in the rest energy of an object. (In other
words, hot objects weigh more than cold objects. But
this is not a measurable effect even on the atomic scale!)
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Mass-energy equivalence




Summary

to and from a moving
reference frame:

X=vy(x—vi) x=y(X+vi)

y=1y y=1Jy Y= 1 -
Z=2z ’ z=2 T -
r'=y(t—vx/ ¢*) t=y(t+vx/ c?)

Relativistic momentum and energy:

p=ymy,

E=yme,
E .~ e,

I=E—E. =(y—1)m02,
E =g ¢ +met,
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