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Course policies

* Classes from 10:00 AM to 12:30 PM (10 min break at ~ 11:10 AM).

* Attendance record counts.

- Up to four absences
- Lateness or leaving early counts as half-absence

— Send emalil notifications of all absences to shpattendance@columbia.edu

* Please, no cell phones during class

* Please, ask questions!

* Lecture materials + Research Opportunities + Resources to become a
particle physicist

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram


mailto:shpattendance@columbia.edu
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Schedule
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Semsary 2 wedseon e
February 3 History-ofParticlePhysies Jose
S s spesReey e

17 Quantum Mechanics Jose

March 3 The Standard Model - Overview Cris

17 No classes, Columbia University spring break

31 No classes, Easter and Passover weekend

14 LHC and Experiments Ines
28 The Higgs Boson and Beyond Ines
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Topics for Today

®* Quantum phenomena:
- Quantization: how Nature comes in discrete
packets
- Particle-wave duality.
- Understanding quantum phenomena in terms of
waves.
- The Schrodinger Equation
® Interpreting quantum mechanics (QM):
- The probabilistic interpretation of quantum
mechanics
- The Uncertainty Principle and the limits of
observation.
® Understanding the Uncertainty Principle:
- Building up wave packets from sinusoids.
- Why the Uncertainty Principle is a natural
property of waves.



What Is Quantum Mechanics (QM)?

® QM is the study of physics at very small scales -
specifically, when the energies and momenta of a
system are of the order of Planck’s constant:

h = h/2n = 6.6%x10-%eV.s

® On the quantum level, “particles" exhibit a number of
non-classical behaviors:

1.Discretization (quantization) of energy, momentum
charge, spin, etc. Most quantities are multiples of e
and/or h.

2.Particles can exhibit wavelike effects: interference,
diffraction, ...

3.5ystems can exist in a superposition of states.



Quantization of electric charge

® Recall:
®].J. Thomson (1897): electric
charge is corpuscular, “stored” in
electrons.
® R. Milikan (1910): electric charge is
gquantized, always showing up In
iIntegral multiples of e.
® Milikan’s experiment: measuring
the charge on ionized oil droplets.

R.A. Millikan
Nobelprize.org



The oil drop experiment

® The experiment entailed
balancing the downward
gravitational force with the
upward buoyant and electric
forces on tiny charged
droplets of oil suspended
between two metal
electrodes.

® Since the density of the oll
was known, the droplets’
masses could be determined
from their observed radii.

® Using a known electric field,
Milikan and Fletcher could
determine the charge on oill
droplets in mechanical
equilibrium.
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The oil drop experiment

® By repeating the experiment for
many droplets, they confirmed
that the charges were all
multiples of some fundamental
value.

® They calculated it to be
1.5924(17)x101° C, within 1% of
the currently accepted value of
1.602176487(40)x10-%° C.

® They proposed that this was the
charge of a single electron.
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Quantization of energy

® Recall:
® M. Planck (1900): blackbody
radiation spectrum can be
explained if light of frequency v
comes in quantized energy
packets, with energies of hv.

Radiated Intensity

+ Curves agree at c
‘{very low frequencies
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® A. Einstein (1905): photoelectric effect can only be
theoretically understood if light is corpuscular.

®N. Bohr (1913): discrete energy spectrum of the hydrogen
atom can be explained if the electron’s angular momentum

about the nucleus is quantized.

® |n an atom, angular momentum mvr always comes in

integral multiples of h = h/2m.




Quantization of energy -5
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Quantization of spin

® The particle property called spin, is also
quantized in units of h.

® All particles have spin: it is an inherent
property, like electric charge, or mass.

® A magnetic phenomenon, spin is very
iImportant.
® |f you understand bar magnets, you

(somewhat) understand spin.

® Spin is closely related to Pauli’s Exclusion
Principle (Spin Statistic Theorem), which
relates the change in sign of the QM
wavefunction when two identical particles
are exchanged in a system (more on this
later...).
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How does spin enter the picture?

® How do particles get a magnetic
moment?

® Enter spin. Imagine an electron as a
rotating ball of radius R, with its charge
distributed over the volume of the
sphere.

® The spinning sets up a current loop
around the rotation axis, creating a
small magnetic dipole: like a bar
magnet!

® The spinning ball gets a dipole moment:

—
—
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® Spin S Is a vector that points along the
axis of rotation (by the “right-hand
rule”). The moment U points in the

opposite direction.
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Spin-magnetism analogy

® To some extent, all elementary particles behave like tiny bar
magnets, as if they had little N and S magnetic poles.

Precession

Precession longitudinal 4
— e B
. trans rransyefse

component

Two bar magnets set side by

side will try Similarly, an object with a

to anti-align such that the north magnetic moment will try to
and south anti-align itself with a magnetic
poles “match up.” field.

® Jargon: if a particle behaves in this way in a magnetic field, it
Is said to have a non-zero magnetic dipole moment u. In a B

field, such a particle will feel a orcey
F=vla- B)



Quantization of spin

® |[f an electron is a spinning ball of charge,
we understand how its magnetic moment
arises.
® This Is still classical physics: the spin axis
may point in any direction. But, Nature is
very different!
® O. Stern and W. Gerlach (1921):
® \While measuring Ag atom spinsina B
field, they found that spin always aligns in
two opposite directions, “up" and “down”,
relative to the field.
® Moreover, the magnitude of the spin
vector is quantized in units of h.
® All elementary particles behave this way:
their spins are always quantized, and when
measured only point in certain directions
(“space quantization”).

Classically, an electron’s spin orientation can take on
a continuum of values; the axis of rotation can point
anywhere it likes.

Image © Hyperphysics

But the classical view is wrong, because measured
spins always seem to line up in certain preferred
directions. This is called a spin-1/2 particle.




Stern & Gerlach experiment

https://www.youtube.com/watch?v=rg4Fnag4V-E


https://www.youtube.com/watch?v=rg4Fnag4V-E

Quantization of spin

® 0. Stern and W. Gerlach (1921):

Inhomogeneous
magnetic field

Field Spin can take
Jerofield  on only two orientations
Photographic pattern - Classical expectation
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Understanding spin

® |f elementary particles like the electron are actually little
spinning spheres of charge, why should their spins be
quantized in magnitude and direction?

® Classically, there is no way to explain this behavior.

®|n 1925, S. Goudsmidt and G. Uhlenbeck realized that the
classical model just cannot apply: electrons do not spin like
tops; magnetic behavior must be explained some other way.

® Modern view: spin is an intrinsic property of all elementary
particles, like charge or mass.
® |t is a completely guantum phenomenon, with no classical

analog.
Like most other quantum mechanical properties,

allowed spin values are restricted to certain
numbers proportional to h.

The classically expected continuum of values is
not observed.




Quantization summarized

® General rule in QM:

® Measurable quantities tend to come in integral (or
half-integral) multiples of fundamental constants.

® Almost all of the time, Planck’s constant is involved In
the quantized result. It's truly a universal, fundamental
constant of Nature.

® Question: why don't we observe quantization at
macroscopic scales?



Quantization summarized

® General rule in QM:

® Measurable quantities tend to come in integral (or
half-integral) multiples of fundamental constants.

® Almost all of the time, Planck’s constant is involved In
the quantized result. It's truly a universal, fundamental
constant of Nature.

® Question: why don't we observe quantization at
macroscopic scales?

®* Answer: due to the smallness of Planck's constant.

® This Is analogous to Special Relativity, where the small
size of the ratio v/c at everyday energy scales prevents
us from observing the consequences of SR in the
everyday world.



More quantum weirdness

® Observation tells us that physical guantities are not
continuous down to the smallest scales, but tend to be
discrete.

® But QM has another surprise: if you look small enough,
matter - that is, “particles” - start to exhibit wavelike
behavior.

® \We have already seen hints of this idea.

® | ight can behave like a wave, and it can behave like a
particle, depending on the circumstances...



More quantum weirdness

® Observation tells us that physical quantities are not

continuous down to the smallest scales, but tend to be

discrete.

® But QM has another surprise: if you look small enough,

matter - that is, “particles” - start to exhibit wavelike

behavior.

® \We have already seen hints of this idea.

Radiated Intensity
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More quantum weirdness

® | . de Broglie (1924) suggested that the wave-particle
behavior of light might apply equally well to matter.

® Just as a photon is associated with a light wave, so an
electron could be associated with a matter wave that
governs its motion.



L. de Broglie
Nobelprize.org

The de Broglie hypothesis

® de Broglie’s suggestion was a very bold statement
about the symmetry of Nature.

® Proposal: the wave aspects of matter are related to its
particle aspects in quantitatively the same way that the
wave and particle aspects of light are related.

® Hypothesis: for matter and radiation, the total energy E
of a particle is related to the frequency v of the wave
associated with its motion by:

E = hv
® |f E=pc (recall SR), then the momentum p of the

particle is related to the wavelength A of the associated

wave by the equation:
P = h/A



The de Broglie hypothesis

°*p = h/A or A=h/p = de Broglie relation

® /t holds even for massive particles.

® |t predicts the de Broglie wavelength of a matter wave
associated with a material particle of momentum p.

A group velocity

—

de Broglie hypothesis: particles
are also associated with waves, \J

which are extended disturbances
In space and time. U




Matter waves and the classical limit

® Question: if the de Broglie hypothesis is correct, why
don’t macroscopic bodies exhibit wavelike behaviors?



Matter waves and the classical limit

® Question: if the de Broglie hypothesis is correct, why
don’t macroscopic bodies exhibit wavelike behaviors?
® Smallness of h!

Try yourself:

® \What is your de Broglie wavelength?

® \What is the de Broglie wavelength of a
100 eV/c electron?

h=6.62606957(29) x1034] s
h=4.13566733(10) x 10> eV s



Testing the wave nature of matter

® Macroscopic particles do not have measurable de
Broglie wavelengths, but electron wavelengths are
about the characteristic size of X-rays.
® S0, we have an easy test of the de Broglie hypothesis:
® Check if electrons exhibit wavelike behavior
(diffraction, interference, ...) under the same
circumstances that X-rays do.
® First, let’s talk a little bit about X-rays and X-ray
diffraction.



The first medical
X_ rays rontgengram:
a hand with buckshot,
1896.
Gamma ray X-ray Ultraviolet Visible Infrared Microwave Radio Radiation Type
102 10" 10°® 0.5 x10® 10° 102 10° Wavelength / m
[ 10" ol 10" 10'2 810 10% Frequency / Hz

® \. Rontgen (1895): discovers X-rays, high energy
photons with typical wavelengths near 0.1 nm.

® Compared to visible light (A between 400 and 750 nm),
X-rays have extremely short wavelengths and high
penetrating power.

® Farly in the 20t century, physicists proved that X-rays
are light waves by observing X-ray diffraction from
crystals.



X-ray crystallography

® How it's done: take X-rays and shoot
them onto a crystal specimen.
® Some of the X-rays will scatter

backwards off the crystal.

® When film is exposed to the
backscattered X-rays, geometric
patterns emerge.

® |In this image, the dark spots
correspond to regions of high intensity
(more scattered X-rays).

® The geometry of the pattern is
characteristic of the structure of the
crystal specimen. _ :
® Different crystals will create different - 2 ’ .

scattering patterns. Negative image of an X-ray
diffraction pattern from a

beryllium aluminum silicate
crystal. The X-rays seem to
scatter only in preferred directions




X-ray diffraction

Crystal surface

® \What is the process behind X-ray
crystallography?

® Why do X-rays appear to scatter off
crystals in only certain directions?
® This behavior can only be

understood if X-rays are waves.

® The idea: think of the crystal as a
set of semi-reflective planes.

® The X-rays reflect from different
planes in the crystal, and then
constructively and destructively
Interfere at the film screen.

...but for certain angles of incidence, the X-rays reflect off lattice

planes such that they travel back to the film screen and
constructively interfere.




Basic wave concepts

® To understand waves in QM,
let’s review some basic wave
concepts.

® \Wavelength A: the repeat
distance of a wave in space.

® Period T: the “repeat distance”
of a wave In time.

® Frequency v: the inverse of the
period; v = 1/T.

®* Amplitude A: the wave's
maximum displacement from
equilibrium.
® Classically, this determines a

wave’s intensity.

Wavelength is easy to visualize;
it Is the distance over which the
wave starts to repeat.

Velocity of
% propagation
—

| -—— Wavelength ———» |

f = frequency
T = Period

For an object executing periodic
motion, like a mass on a spring,
the period is just the time
interval over which the wave
starts to repeat.

A
amplitude

l

Y]

» time
|=— period

I
[ The amplitude A is the
maximum displacement
Equilibrium | | from equilibrium, not
line the total swing.

Mass shown at
equilibrium
postion.




Basic concept: interference

Waves can add or cancel,
depending on their relative phase.
You can visualize phase by
Imagining uniform circular motion
on a unit circle.

Shadow

Light

Circular motion
at constant

spead.

Shadow moves in
simple harmonic motion.

- o | Phaseis
180 the fraction
of a cycle

expressed
in dagreeas.

Time trace
of shadow
position.

.\

In phase + Constructive
\//—\ \/ interference

/_\ Destructive
\_/ 180°out interference
/\4‘ of phase =

® Principle of Superposition: you can add up any number of
waves (sinusoids) to get another wave.

® The resultant wave may be larger or smaller than its
components, depending on their relative phase angles.

® Phases can be understood in terms of motion on the unit

circle.

® Hence, waves interfere, canceling each other at certain

locations.

® Interference is what gives rise to the light and dark spots in
the X-ray diffraction pattern.




How X-ray interference works

® Consider two X-ray beams
reflecting from two crystal
planes a distance d >> 0.1nm
apart.

® The wave reflecting from the
lower plane travels a distance
2| farther than the upper
wave.

® |[f an integral number of
wavelengths nA just fits into
the distance 21, the two
beams will be in phase and
will constructively interfere.

® Only certain incident angles
lead to constructive

interference: gy = 2/=2dsin @

N
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Destructive
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Electron diffraction

® Scattering electrons off
crystals also creates a
diffraction pattern!

® Electron diffraction is only
possible if electrons are
waves.

® Hence, electrons (matter
particles) can also behave
as waves.

Diffraction pattern created by
scattering electrons off a
crystal. (This is a negative
Image, so the dark spots are
actually regions of constructive
Interference.) Electron
diffraction is only possible if
electrons are waves.




Observation of electron diffraction

® Electron diffraction was first observed in a famous 1927

experiment by Davisson and Germer.
® They fired 54 eV electrons at a nickel target and observed
diffraction peaks consistent with de Broglie’s hypothesis.
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Electron diffraction demo

https://www.youtube.com/watch?v=1YnU4T3jbgA


https://www.youtube.com/watch?v=IYnU4T3jbgA

Understanding matter waves

® | et’s think a little more about de Broglie waves.
® |n classical physics, energy is transported either by
waves or by particles.
® Particle: a definite, localized bundle of energy and
momentum, like a bullet that transfers energy from
gun to target.
® \Wave: a periodic disturbance spread over space and
time, like water waves carrying energy on the surface
of the ocean.
® |n guantum mechanics, the same entity can be
described by both a wave and a particle model:
® Electrons scatter like localized particles, but they can
also diffract like extended waves.



The wave function

® Particles & waves.
®* How do we represent wave-particles mathematically?

® Classically: a particle can be represented solely by its position x
and momentum p. If it is acted on by an external force, we can
find x and p at any tzime bv solving a differential equation like:

md X_db_ F (Newton's 2ndLaw)
at  dt

® A wave is an extended object, so we can’t represent it by the
pair of numbers (x,p).

® |nstead, for a wave moving at velocity c=Av, we define a “wave
function” y(x,t) that describes the wave’s extended motion in
time and space.

® To find y(x,t) at any position and time, we solve a differential
equation like:

Something similar
applies to particles...

_ 19 (waveequation)
of



Wave equation for guantum waves

® Time evolution of waves can usually be found by solving a
wave equation like:

oYy 1 0%y

ox> ¢° oF
® E. Schrodinger (1926) found that quantum particles moving
in a 1D potential V(x) obey the partial differential equation:

ma‘”””){ L V(X)}I(XJ)

ot 2m X

¥ This expression involves h, the usual QM parameter.
Y|t also involves the number i, which means that the waves y(x,t)
are complex.



The de Broglie wave

® Particles can be described by de Broglie waves of
wavelength A=h/p.

® For a particle moving in the x direction with momentum
p=h/A and energy E=hv, the wave function can be
written as a simple sinusoid of amplitude A:

W(x. 1) = Asin 27{; _ vl]

® The propagation velocity c of this wave is:

6= AV



Quantum waves summarized

® An elementary particle like a photon can act like a
particle (Compton effect, photoelectric effect) or a wave
(diffraction), depending on the type of experiment /
observation.

® |f it's acting like a particle, the photon can be described
by its position and momentum X and p. If it's acting like
a wave, we must describe the photon with a wave
function y(x,t).

® Two waves can always superpose to form a third: gy =
WY1 + Yo.
® This is what gives rise to interference effects like

diffraction.

® The wave function for a moving particle (a traveling
wave) has a simple sinusoidal form.
® But how do we interpret y(x,t) physically?



Interpretation of the wave function

® \We have seen that any wave can be described by a
wave function y(x,t).
® For any wave, we define the wave’'s intensity | to be:

[=lw(x 0" = [ ax y(xDy(x 1)

where the asterisk signifies complex conjugation. Note
that for a plane wave this is the square of A (a constant):

=l =|A

® | et's use the concept of intensity and a simple thought
experiment to get some intuition about the physical
meaning of the de Broglie wave function.




The double slit experiment

® Experiment: a device sprays an electron beam at a wall
with two small holes in it. The size of the holes is close to

the electrons’ wavelength Ags.
® Behind the wall is a screen

with an electron detector.

® As electrons reach the
screen, the detector counts
up how many electrons strike
each point on the wall.

® Using the data, we plot the
intensity I(x): the number of
electrons arriving per second
at position x.

Electron gun

Wall

e X

>
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Movable
detector

Slit 1

Slit 2

LR

]
Backstop




The double slit experiment

https://www.youtube.com/watch?v=qCmtegdgOOA


https://www.youtube.com/watch?v=qCmtegdqOOA

The double slit experiment

® The classical result:

XY x4
L7
Movable /|
detector v
sl
| 7 Slit1 Ha Slit 1 open hia
Y /
EJ%{‘:}- “slit2 Q_ R -
™
Electron gun - § o
g ]
/ 4
¢ [/ |
b / Slit 2 open
Wall Backstop lits 1 and 2 open

® |f electrons are classical particles, we expect the intensity
In front of each slit to look like a bell curve, peaked directly
In front of each slit opening.

® \When both slits are open, the total intensity l1+2> on the
screen should just be the sum of the intensities |1 and |2
when only one or the other slit is open.




The double slit experiment

® |n practice:

4 (/ }
{ /|
LA Movable /
[) detector E/
_,.-i Slit 1 J L/‘ Slit 1 open /1+2
g~ __- R ____ K
?‘J%\E: Slit 2 /| -
Electron gun - ti 7
’ ]
r’ /4 Slit 2 open
s &
Wall . Backstop # Slits 1 and 2 open
® When we perform the real experiment, a strange thing

happens.

® \When only one slit is open, we get the expected intensity
distributions.

® But when both slits are open, a wavelike diffraction pattern
appears.

® Apparently, the electrons are acting like waves in this
experiment.



Wave function interpretation

... 7 |
1 v
A Movable /‘
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® |n terms of waves, the wave function of an electron at the screen
when only slit 1 is open is g1, and when only slit 2 is open it's ..
® Hence, the intensity when only one slit is open is either |1=|y:|?

or l,=|y2|?.

¢ \With both slits open, the intensity at the screen is li2=|p1+y:2|?,
not just l1+1>!

®* When we add the wave functions, we get constructive and
destructive interference; this is what creates the diffraction
pattern.



Wave function and probability

® |[f electrons create a diffraction pattern, (a) After 28 electrons
they must be waves. But when they hit
the screen, they are detected as

particles.
®* How do we interpret this? __
® M. Born: Intensity I(x)=|yp(x,t)|? actually (b) Ater 1000 slectrons

refers to probability a given electron
hits the screen at position x.
®*In QM, we don’t specify the exact
ocation of an electron at a given time,
out instead state by I(x)=|y(x,t)|? the

ic) After 10,000 electrons

orobability of finding a particle at a
certain location at a given time. -Il.

The probabilistic interpretation gives

physical meaning to y(x,t): it is the Diffraction pattern from an
" Cpe : " : : actual electron double slit
prObab”'ty amp“tUde of ﬁndmg d experiment. Notice how the

Interference pattern builds

particle at x at time t. particle by particle.




s there a contradiction?

® \We now understand the wave function in terms of the
probability of a particle being someplace at some time.
® However, there is another problem to think about.

® Since the electrons diffract, they show wavelike behavior;
but when they hit the screen, they interact like particles.
And If they are particles, then shouldn't they only go
through one slit at a time?

® |f this is the case, how can an electron’s wave undergo
double slit interference when the electron only goes
through one slit?
® Seems impossible...



s there a contradiction?

® \We now understand the wave function in terms of the
probability of a particle being someplace at some time.
® However, there is another problem to think about.

® Since the electrons diffract, they show wavelike behavior;
but when they hit the screen, they interact like particles.
And If they are particles, then shouldn't they only go
through one slit at a time?

® |f this is the case, how can an electron’s wave undergo
double slit interference when the electron only goes
through one slit?
® Seems impossible...

® To test what's going on, suppose we slow down the electron
gun so that only one electron at a time hits the wall.

® \We then insert a device over each slit that tells us if the
electron definitely went through one slit or the other.



Destroying the interference pattern

g
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® \We add electron detectors that shine light across each slit.

® When an electron passes through one of the slits, it breaks
the beam, allowing us to see whether it traveled through slit 1
or slit 2 on its way to the backstop.

® Result: if we try to detect the electrons at one of the two slits
In this way, the interference pattern is destroyed! In fact, the
pattern now looks like the one expected for classical particles.




Complementarity

® Why did the interference pattern disappear?

® Apparently, when we used the light beam to localize
the electron at one slit, we destroyed something in the
wave function y(x,t), that contributes to interference.

® Principle of Complementarity (N. Bohr): if a
measurement proves the wave character of radiation or
matter, it iIs Impossible to prove the particle character
In the same measurement, and vice-versa.

® The link between the wave and particle models is
provided by the probability interpretation of y(x,t), in
which an entity’s wave gives the probability of finding
its particle at some position.



Schrodinger’s cat




The Uncertainty Principle

® There seems to be some fundamental constraint on QM

that prevents matter from acting wave-like and particle-

like simultaneously.

® Moreover, it appears that our measurements can
directly affect whether we observe particle or wavelike
behavior.

® These effects are encapsulated in the Uncertainty
Principle.

® Heisenberg: quantum observations are fundamentally
limited in accuracy.



The Uncertainty Principle (1)

® According to classical physics, we can (at the same
Instant) measure the position x and momentum px of a
particle to infinite accuracy if we like. We’'re only limited
by our equipment.

® However, Heisenberg’'s uncertainty principle states that
experiment cannot simultaneously determine the exact
values of x and px.

® Quantitatively, the principle states that if we know a
particle’s momentum px to an accuracy Apx, and its
position x to within some AX, the precision of our
measurement is inherently limited such that:

ADAX> /2




Using the Uncertainty Principle

® Does the Uncertainty Principle (UP) mean that we can’t
measure position or momentum to arbitrary accuracy?

® No. The restriction is not on the accuracy to which x and px
can be measured, but rather on the product ApxAX in a
simultaneous measurement of both.

® The UP implies that the more accurately we know one
variable, the less we know the other. If we could measure a
particle’s pxto infinite precision, so that Apx=0, then the

uncertainty principle states:
hi2 h/2
AX> = — =

AP, 0
® |n other words, after our measurement of the particle’s

direction (momentum), we lose all information about its
position!

o0



The Uncertainty Principle (2)

® The Uncertainty Principle has a 10}
second part related to measurements

of energy E and the time t needed for  °%f o

the measurements. It states that: ik Wigner
AEAIZh/z - ine shape
® Example: estimate the mass of virtual 04T

particles confined to the nucleus (see
Lecture 2 on estimating Yukawa’s meson

02

Mmass). 0 =D%&r2r o 4 T 22 +ar
® Example: At could be the time during Eo =myC’
which a photon of energy spread AE is
emitted from an atom. Atomic spectral lines, the
° - : : result of transitions that
Th|§ effect causes spectrgl .Ilnes N take a finite time. are not
excited atoms to have a finite thin “delta function”
uncertainty AA (“natural width”) in spikes, but actually have
their Wavelengths. a natural width due to the

Uncertainty Principle.



Uncertainty and the double slit

® Now that we know the UP, we can
understand why we can’t “beat" the
double slit experiment and
simultaneously observe wave and
particle behavior.

® Basically, our electron detector Compton
scatters light off of incoming electrons.

® \When an electron uses one of the slits,
we observe the scattered photon and
know that an electron went through that
slit.

® Unfortunately, when this happens, the
photon transfers some of its momentum
to the electron, changing its momentum.

mitter

Photon beam used to
detect electrons

T

Slit 1

>
n

< ‘fffﬁ\\
Incoming electro

Observer sees \ \

the scattered
photon. eceiver

i,

Wall

Detection photon
Compton scatters off an
iIncoming electron,
transferring its
momentum.



Uncertainty and the double slit

® |f we want to know the slit used, the photon’s wavelength
must be smaller than the spacing between the two slits.

® Hence, the photon has to have a large momentum
(remember, A=h/p).

® As a result, a lot of momentum gets transferred to the
electron - enough to effectively destroy the diffraction

pattern.

If the wavelength of the
scattering photon is small
enough to pinpoint the
electron at one of the slits,
il the resulting momentum
R transfer is large enough to
] “push” the electron out of
the interference minima and
maxima. The diffraction
pattern is destroyed.

Incident i |
plane :
wave

Single slit
envelope




Uncertainty and the double slit

® |[f we try to pinpoint the electron at one of the slits, we
change its motion, and the interference pattern
vanishes.

® Can you think of a way to get around this problem?



Uncertainty and the double slit

® |[f we try to pinpoint the electron at one of the slits, we
change its motion, and the interference pattern
vanishes.

® Can you think of a way to get around this problem?

® \We could use lower energy photons...

® |t turns out, that just when the photon momentum gets
ow enough that electron diffraction reappears, the

ohoton wavelength becomes larger than the separation

netween the two slits (see Feynman Lectures on
Physics, Vol. 3).

® This means we can no longer tell which slit the electron
went through!




Why the Uncertainty Principle

® | et's review what we have said so far about matter waves
and quantum mechanics.

® Elementary particles have associated matter waves y(x,t).
The intensity of the wave, I(x)=|p(x,t)|?, gives the
probability of finding the particle at position x at time t.

® However, QM places a firm constraint on the simultaneous
measurements we can make of a particle’s position and
momentum: ApxAx=h/2.

® This last concept, the Uncertainty Principle, probably seems
very mysterious. However, it turns out that it is just a
natural consequence of the wave nature of matter, for all
waves obey an Uncertainty Principle!

® | et’'s take a look...



Probabilities and waves, again

® Consider a particle with de Broglie wavelength A.

® Defining the wave number k = 21/A and the angular
frequency

® W= 21nv, the wave function for such a particle could be
(conveniently) written:

w(Xx, )= Asin(kx— wl)

® |[f the wavelength has a definite value A there is no
uncertainty AA, and hence p=h/A is also definite.
® Such a wave is a sinusoid that extends over all values of x

with constant amplitude.

® |f this is the case, then the probability of finding the particle
should be equally likely for any x; in other words, the
location of the particle is totally unknown. Of course, this
should happen, according to the Uncertainty Principle.



Wave functions should be finite

® [f a wavefunction is infinite in extent, like y =Asin2m(x/A-vt),
the probability interpretation suggests that the particle
could be anywhere: Ax=co.

® |f we want particles to be localized to some smaller Ax, we
need one whose amplitude varies with x and t, so that it
vanishes for most values of x. But how do we create a
function like this?

Particle could be anywhere! Particle localized here!

4

Left: a wave function with constant amplitude means that its corresponding particle is equally likely to be at any value of X.
Right: a finite wave function, or “wave packet,” corresponds to a localized particle with AXco.




Building wave packets

® |n order to get localized particles, their corresponding
wave functions need to go to zero as x—»*x«. Such a
wave function is called a wave packet.

® |t turns out to be rather easy to generate wave packets:
all we have to do is superimpose, or add up, several
sinusoids of different wavelengths or frequencies.

® Recall the Principle of Superposition: any wave gy can be
built up by adding two or more other waves.

® |f we pick the right combination of sinusoids, they will
cancel at every x other than some finite interval
(Fourier Theorem).




Superposition example: beats

® You may already know that adding two sine waves of
slightly different wavelengths causes the phenomenon
of beats (see below).

® A typical example: using a tuning fork to tune a piano
string. If you hear beats when you strike the string and
the tuning fork simultaneously, you know that the string
Is slightly out of tune.

The sum of two sine waves of
slightly different wavelengths

;Ssc;]tzt:nigybiiartes'5t£getgi22 Il ||l|l|lll l“““il IHHHH 1l

difference between the '-v rv ru rv
wavelengths. This is a Iv u ' l v “ v
demonstration of how adding

two sinusoids creates a wave

of varying amplitude.



Superimposing more sinusoids

® Now, let’'s sum seven sinusoidal waves of the form:

15%27
Y= kaﬁ’ - z;f(=9*2:r Ay cos(kx)
where k=2T[/)\ and Ag= A15=1/4, Aio= A14=1/3, A= A13=1/2,
and A.=1.

We get a function that is starting to look like a wave packet;
however, as you can see, it's still periodic, although in a
more complicated way than usual:

| |

Summing up sinusoids to get

another periodic function. This Jnun ﬂvnﬂ huf\ A ﬁvnvn nvh
IS an example of Fourier’s V V J A V v
Theorem: any periodic function | u
may be generated by summing “

up sines and cosines.




The continuum limit

® S0, evaluating a sum of sinusoids like:

Y= A cos(kX)
where k is an integer that runs between ki and k2, we can
reproduce any periodic function.
® |f we let k run over all values between ki and kz - that is, we
make it a continuous variable -then we can finally

reproduce a finite wave packet.

By summing over all values of k in an interval dk=
k,-k,, we are essentially evaluating the integral

w =" dk Ak)cos(k»)

In such a “continuous sum”, the component
sinusoids are all in phase near x=0. Away from this
point, in either direction, the components begin to ﬂ

get out of phase with each other. If we go far Q Vf\v-

enough out, the phases of the infinite number of -
components become totally random, and cancel out \‘ .
phases of component sinusoids completely. u

Phases of component
sinusoids completely
cancel out here.




Connection to uncertainty

® SO0, we can sum up sinusoids to get wave packets.
® \What does this actually mean?

® Intuition: we want a wave function that is non-zero only
over some finite interval Ax.

® To build such a function, we start adding sinusoids
whose inverse wavelengths, k=2m/A, take on values In
some finite interval Ak.

® Here’s the point: as we make the interval Ak bigger, the
width of the wave packet Ax gets smaller. This sounds
like the Uncertainty Principle!




Wave-related uncertainties

® As we sum over sinusoids, making the range of k
values Ak larger, we decrease the width of the resulting
function.

® |n fact, there is a fundamental limit here that looks just
like the position-momentum uncertainty relation.

® For any wave, the minimum width Ax of a wave packet
composed from sinusoids with range Ak is Ax=1/(2Ak),

or.
AXANK=1/2

® There is a similar relation between time and frequency:

AlAw=1/2



Connection to QM

® |[f k=21/A, and A=h/p, then the uncertainty relation for
waves in general tells us:

AXAK>1/2
= AxZE — 2aaxBP
AL h

AXAD > h/ dn=Hh/2

® \We recover the Heisenberg uncertainty relation!

® By a similar argument, we can show that the frequency-
time uncertainty relation for waves implies the energy-time
uncertainty of quantum mechanics.

® The Uncertainty Principle arises as a consequence of the
wave nature of particles!



Applications to Particle Physics

® A particle can be described as a superposition of other
particles (e.g. neutrino oscillations).

® Since trajectories are not well defined, we need to
consider all processes (Feynman diagrams) consistent
with the observed result. The amplitudes of these
processes can interfere, enhancing or suppressing the
total probability.

® The production of new particles from collisions or
decays of other particles is subject to the probabilistic
nature of Quantum Mechanics. We call this probabilities
branching ratios.

® Schrodinger's equation is valid for non-relativistic
particles. In Particle Physics we use the Dirac equation
for spin = % particles and the Klein-Gordon equation for
spin = 0 particles.



Applications to Particle Physics

® A particle can be described as a superposition of other
particles (e.g. neutrino oscillations).

o=\)+ +

Electron Neutrino Neutrinol Neutrino2 Neutrino3

@ = Q@ + +

Muon Neutrino

@Q = o + +

Tau Neutrino



Applications to Particle Physics

® Since trajectories are not
well defined, we need to
consider all processes
(Feynman diagrams)
consistent with the
observed result. The
amplitudes of these
processes can interfere,
enhancing or suppressing
the total probability.



Applications to Particle Physics

® The production of new particles from collisions or
decays of other particles is subject to the probabilistic
nature of Quantum Mechanics. We call this probabilities

branching ratios.
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Applications to Particle Physics

® Schrodinger's equation is valid for non-relativistic
particles. In Particle Physics we use the Dirac equation
for spin = % particles and the Klein-Gordon equation for
spin = 0 particles.

Dirac equation

ihy" 8,9 — meyp =0

where there is an implied summation over the values of the twice-repeated indexu =10, 1, 2, 3, and FJ“ is the 4-gradient. In practice one often writes the gamma
matrices in terms of 2 x 2 sub-matrices taken from the Pauli matrices and the 2 x 2 identity matrix. Explicitly the standard representation is

ﬂ_(I'.-’ 0) 1_( 0 Ja:) E_( 0 JI:") rﬂ_( 0 Uz)
v 0 )7 "\ 0)7 06 o)) o. 0)

1 & m?2c?

——p— Vo + = 0.




Summary

® Quantum mechanics is the physics of small objects.
® |[ts typical energy scale is given by Planck’s constant.

® |n QM, variables like position, momentum, energy, etc.
tend to take on discrete values (often proportional to h).

® Matter and radiation can have both particle and
wavelike properties, depending on the type of
observation.

® But by the Uncertainty Principle, objects can never be
wavelike or particle-like simultaneously.

® Moreover, it is the act of observation that determines
whether matter behaves like a wave or a particle.
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