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Course policies

 Classes from 10:00 AM to 12:30 PM (10 min break at ~ 11:10 AM).

 Attendance record counts.

 Up to four absences

 Lateness or leaving early counts as half-absence 

– Send email notifications of all absences to shpattendance@columbia.edu

 Please, no cell phones during class

 Please, ask questions!

 Lecture materials + Research Opportunities + Resources to become a 
particle physicist

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram

mailto:shpattendance@columbia.edu
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram
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Schedule
Month Day Lecture Teacher

January 27 Introduction Jose

February 3 History of Particle Physics Jose

10 Special Relativity Jose

17 Quantum Mechanics Jose

24 Experimental Methods Cris

March 3 The Standard Model - Overview Cris

10 The Standard Model - Limitations Cris

17 No classes, Columbia University spring break

24 Neutrino Theory Cris

31 No classes, Easter and Passover weekend

April 7 Neutrino Experiment Jose

14 LHC and Experiments Ines

21 No classes, SHP break

28 The Higgs Boson and Beyond Ines

May 5 Particle Cosmology Cris



Topics for Today

Quantum phenomena:
- Quantization: how Nature comes in discrete 

packets
- Particle-wave duality.
- Understanding quantum phenomena in terms of 

waves.
- The Schrödinger Equation

Interpreting quantum mechanics (QM):
- The probabilistic interpretation of quantum 

mechanics
- The Uncertainty Principle and the limits of 

observation.
Understanding the Uncertainty Principle:

- Building up wave packets from sinusoids.
- Why the Uncertainty Principle is a natural 

property of waves.



What is Quantum Mechanics (QM)?

QM is the study of physics at very small scales - 
specifically, when the energies and momenta of a 
system are of the order of Planck’s constant: 

ħ = h/2 ≅ 6.6×10-16eV.s
On the quantum level, “particles" exhibit a number of 
non-classical behaviors:

1.Discretization (quantization) of energy, momentum 
charge, spin, etc. Most quantities are multiples of e 
and/or h.

2.Particles can exhibit wavelike effects: interference, 
diffraction, …

3.Systems can exist in a superposition of states.



Quantization of electric charge

Recall: 
J.J. Thomson (1897): electric 
charge is corpuscular, “stored” in 
electrons.

R. Milikan (1910): electric charge is 
quantized, always showing up in 
integral multiples of e.

Milikan’s experiment: measuring 
the charge on ionized oil droplets.

R.A. Millikan
Nobelprize.org



The oil drop experiment

The experiment entailed 
balancing the downward 
gravitational force with the 
upward buoyant and electric 
forces on tiny charged 
droplets of oil suspended 
between two metal 
electrodes.

Since the density of the oil 
was known, the droplets’ 
masses could be determined 
from their observed radii.

Using a known electric field, 
Milikan and Fletcher could 
determine the charge on oil 
droplets in mechanical 
equilibrium.
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The oil drop experiment

By repeating the experiment for 
many droplets, they confirmed 
that the charges were all 
multiples of some fundamental 
value.

They calculated it to be 
1.5924(17)x10-19 C, within 1% of 
the currently accepted value of 
1.602176487(40)x10-19 C.

They proposed that this was the 
charge of a single electron.

M
ill

ik
a
n
’s

 s
e
tu

p



Quantization of energy

Recall: 
M. Planck (1900): blackbody 
radiation spectrum can be 
explained if light of frequency ν 
comes in quantized energy 
packets, with energies of hν.

A. Einstein (1905): photoelectric effect can only be 

theoretically understood if light is corpuscular.
N. Bohr (1913): discrete energy spectrum of the hydrogen 

atom can be explained if the electron’s angular momentum 

about the nucleus is quantized.
In an atom, angular momentum mvr always comes in 

integral multiples of ħ = h/2π.
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Quantization of spin

The particle property called spin, is also 
quantized in units of ħ.

All particles have spin: it is an inherent 
property, like electric charge, or mass.

A magnetic phenomenon, spin is very 
important.
If you understand bar magnets, you 
(somewhat) understand spin.

Spin is closely related to Pauli’s Exclusion 
Principle (Spin Statistic Theorem), which 
relates the change in sign of the QM 
wavefunction when two identical particles 
are exchanged in a system (more on this 
later…).



How does spin enter the picture?

How do particles get a magnetic 
moment? 

Enter spin.  Imagine an electron as a 
rotating ball of radius R, with its charge 
distributed over the volume of the 
sphere.

The spinning sets up a current loop 
around the rotation axis, creating a 
small magnetic dipole: like a bar 
magnet!

The spinning ball gets a dipole moment:

Spin S is a vector that points along the 
axis of rotation (by the “right-hand 
rule”). The moment μ points in the 
opposite direction.



Spin-magnetism analogy

To some extent, all elementary particles behave like tiny bar 
magnets, as if they had little N and S magnetic poles.

Similarly, an object with a 
magnetic moment will try to 
anti-align itself with a magnetic 
field. 

Jargon: if a particle behaves in this way in a magnetic field, it 
is said to have a non-zero magnetic dipole moment μ. In a B 
field, such a particle will feel a force:

Two bar magnets set side by 
side will try 
to anti-align such that the north 
and south 
poles “match up.”



Quantization of spin
If an electron is a spinning ball of charge, 

we understand how its magnetic moment 
arises.

This is still classical physics: the spin axis 
may point in any direction. But, Nature is 
very different!

O. Stern and W. Gerlach (1921): 
While measuring Ag atom spins in a B 

field, they found that spin always aligns in 
two opposite directions, “up" and “down”, 
relative to the field.

Moreover, the magnitude of the spin 
vector is quantized in units of ħ.

All elementary particles behave this way: 
their spins are always quantized, and when 
measured only point in certain directions 
(“space quantization”).



Stern & Gerlach experiment 

https://www.youtube.com/watch?v=rg4Fnag4V-E

https://www.youtube.com/watch?v=rg4Fnag4V-E


Quantization of spin

O. Stern and W. Gerlach (1921): 



Understanding spin

If elementary particles like the electron are actually little 
spinning spheres of charge, why should their spins be 
quantized in magnitude and direction?

Classically, there is no way to explain this behavior.
In 1925, S. Goudsmidt and G. Uhlenbeck realized that the 
classical model just cannot apply: electrons do not spin like 
tops; magnetic behavior must be explained some other way.

Modern view: spin is an intrinsic property of all elementary 
particles, like charge or mass. 
It is a completely quantum phenomenon, with no classical 
analog.

Like most other quantum mechanical properties, 

allowed spin values are restricted to certain 

numbers proportional to ħ. 

The classically expected continuum of values is 

not observed.



Quantization summarized

General rule in QM: 
Measurable quantities tend to come in integral (or 
half-integral) multiples of fundamental constants.

Almost all of the time, Planck’s constant is involved in 
the quantized result. It’s truly a universal, fundamental 
constant of Nature.

Question: why don't we observe quantization at 
macroscopic scales?



Quantization summarized

General rule in QM: 
Measurable quantities tend to come in integral (or 
half-integral) multiples of fundamental constants.

Almost all of the time, Planck’s constant is involved in 
the quantized result. It’s truly a universal, fundamental 
constant of Nature.

Question: why don't we observe quantization at 
macroscopic scales?

Answer: due to the smallness of Planck's constant.
This is analogous to Special Relativity, where the small 
size of the ratio v/c at everyday energy scales prevents 
us from observing the consequences of SR in the 
everyday world.



More quantum weirdness

Observation tells us that physical quantities are not 
continuous down to the smallest scales, but tend to be 
discrete.

But QM has another surprise: if you look small enough, 
matter - that is, “particles” - start to exhibit wavelike 
behavior.

We have already seen hints of this idea.
Light can behave like a wave, and it can behave like a 
particle, depending on the circumstances…
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More quantum weirdness

L. de Broglie (1924) suggested that the wave-particle 
behavior of light might apply equally well to matter.

Just as a photon is associated with a light wave, so an 
electron could be associated with a matter wave that 
governs its motion.



The de Broglie hypothesis

de Broglie’s suggestion was a very bold statement 
about the symmetry of Nature.

Proposal: the wave aspects of matter are related to its 
particle aspects in quantitatively the same way that the 
wave and particle aspects of light are related.

Hypothesis: for matter and radiation, the total energy E 
of a particle is related to the frequency ν of the wave 
associated with its motion by:

E = h
If E=pc (recall SR), then the momentum p of the 
particle is related to the wavelength λ of the associated 
wave by the equation:

p = h/λ

L. de Broglie
Nobelprize.org



The de Broglie hypothesis

p = h/λ or λ=h/p → de Broglie relation

It holds even for massive particles.
It predicts the de Broglie wavelength of a matter wave 
associated with a material particle of momentum p.

de Broglie hypothesis: particles 
are also associated with waves, 
which are extended disturbances 
in space and time. 

group velocity



Matter waves and the classical limit

Question: if the de Broglie hypothesis is correct, why 
don’t macroscopic bodies exhibit wavelike behaviors?



Matter waves and the classical limit

Question: if the de Broglie hypothesis is correct, why 
don’t macroscopic bodies exhibit wavelike behaviors?
Smallness of h!

What is your de Broglie wavelength?
What is the de Broglie wavelength of a 
100 eV/c electron?
h = 6.62606957(29) ×10-34 J s
h = 4.13566733(10) × 10-15 eV s

Try yourself:



Testing the wave nature of matter

Macroscopic particles do not have measurable de 
Broglie wavelengths, but electron wavelengths are 
about the characteristic size of X-rays.

So, we have an easy test of the de Broglie hypothesis:
Check if electrons exhibit wavelike behavior 
(diffraction, interference, …) under the same 
circumstances that X-rays do.

First, let’s talk a little bit about X-rays and X-ray 
diffraction.



X-rays

W. Röntgen (1895): discovers X-rays, high energy 
photons with typical wavelengths near 0.1 nm.

Compared to visible light (λ between 400 and 750 nm), 
X-rays have extremely short wavelengths and high 
penetrating power.

Early in the 20th century, physicists proved that X-rays 
are light waves by observing X-ray diffraction from 
crystals.

The first medical 
röntgengram: 

a hand with buckshot, 
1896.



X-ray crystallography

How it’s done: take X-rays and shoot 
them onto a crystal specimen.
Some of the X-rays will scatter 

backwards off the crystal.
When film is exposed to the 

backscattered X-rays, geometric 
patterns emerge.

In this image, the dark spots 
correspond to regions of high intensity 
(more scattered X-rays).

The geometry of the pattern is 
characteristic of the structure of the 
crystal specimen. 
Different crystals will create different 

scattering patterns. Negative image of an X-ray 
diffraction pattern from a 
beryllium aluminum silicate 
crystal.  The X-rays seem to 
scatter only in preferred directions



X-ray diffraction

What is the process behind X-ray 
crystallography?

Why do X-rays appear to scatter off 
crystals in only certain directions?
This behavior can only be 
understood if X-rays are waves.

The idea: think of the crystal as a 
set of semi-reflective planes.

The X-rays reflect from different 
planes in the crystal, and then 
constructively and destructively 
interfere at the film screen.



Basic wave concepts

To understand waves in QM, 
let’s review some basic wave 
concepts.

Wavelength λ: the repeat 
distance of a wave in space.

Period T: the “repeat distance” 
of a wave in time.

Frequency ν: the inverse of the 
period; ν = 1/T.

Amplitude A: the wave’s 
maximum displacement from 
equilibrium. 
Classically, this determines a 
wave’s intensity.

Wavelength is easy to visualize; 
it is the distance over which the 
wave starts to repeat. 

For an object executing periodic 
motion, like a mass on a spring, 
the period is just the time 
interval over which the wave 
starts to repeat. 



Basic concept: interference

Principle of Superposition: you can add up any number of 
waves (sinusoids) to get another wave.

The resultant wave may be larger or smaller than its 
components, depending on their relative phase angles.

Phases can be understood in terms of motion on the unit 
circle.
Hence, waves interfere, canceling each other at certain 
locations.

Interference is what gives rise to the light and dark spots in 
the X-ray diffraction pattern.

Waves can add or cancel, 
depending on their relative phase.  
You can visualize phase by 
imagining uniform circular motion 
on a unit circle.



How X-ray interference works

Consider two X-ray beams 
reflecting from two crystal 
planes a distance d >> 0.1nm 
apart.

The wave reflecting from the 
lower plane travels a distance 
2l farther than the upper 
wave.

If an integral number of 
wavelengths nλ just fits into 
the distance 2l, the two 
beams will be in phase and 
will constructively interfere.

Only certain incident angles 
lead to constructive 
interference:



Electron diffraction

Scattering electrons off 
crystals also creates a 
diffraction pattern!

Electron diffraction is only 
possible if electrons are 
waves.

Hence, electrons (matter 
particles) can also behave 
as waves.

Diffraction pattern created by 
scattering electrons off a 
crystal.  (This is a negative 
image, so the dark spots are 
actually regions of constructive 
interference.) Electron 
diffraction is only possible if 
electrons are waves. 



Observation of electron diffraction

Electron diffraction was first observed in a famous 1927 
experiment by Davisson and Germer.

They fired 54 eV electrons at a nickel target and observed 
diffraction peaks consistent with de Broglie’s hypothesis.



Electron diffraction demo

https://www.youtube.com/watch?v=IYnU4T3jbgA

https://www.youtube.com/watch?v=IYnU4T3jbgA


Understanding matter waves

Let’s think a little more about de Broglie waves.
In classical physics, energy is transported either by 
waves or by particles.
Particle: a definite, localized bundle of energy and 
momentum, like a bullet that transfers energy from 
gun to target.

Wave: a periodic disturbance spread over space and 
time, like water waves carrying energy on the surface 
of the ocean.

In quantum mechanics, the same entity can be 
described by both a wave and a particle model:
Electrons scatter like localized particles, but they can 
also diffract like extended waves.



The wave function

Particles ↔ waves.
How do we represent wave-particles mathematically?

Classically: a particle can be represented solely by its position x 
and momentum p. If it is acted on by an external force, we can 
find x and p at any time by solving a differential equation like:

A wave is an extended object, so we can’t represent it by the 
pair of numbers (x,p).

Instead, for a wave moving at velocity c=λν, we define a “wave 
function” ψ(x,t) that describes the wave’s extended motion in 
time and space.

To find ψ(x,t) at any position and time, we solve a differential 
equation like:

Something similar 
applies to particles…



Wave equation for quantum waves

Time evolution of waves can usually be found by solving a 
wave equation like:

E. Schrödinger (1926) found that quantum particles moving 
in a 1D potential V(x) obey the partial differential equation:

✓This expression involves ħ, the usual QM parameter.
✓It also involves the number i, which means that the waves ψ(x,t) 

are complex.



The de Broglie wave

Particles can be described by de Broglie waves of 
wavelength λ=h/p. 

For a particle moving in the x direction with momentum 
p=h/λ and energy E=hν, the wave function can be 
written as a simple sinusoid of amplitude A:

The propagation velocity c of this wave is:



Quantum waves summarized

An elementary particle like a photon can act like a 
particle (Compton effect, photoelectric effect) or a wave 
(diffraction), depending on the type of experiment / 
observation.

If it’s acting like a particle, the photon can be described 
by its position and momentum x and p. If it’s acting like 
a wave, we must describe the photon with a wave 
function ψ(x,t).

Two waves can always superpose to form a third: ψ = 
ψ1 + ψ2.
This is what gives rise to interference effects like 
diffraction.

The wave function for a moving particle (a traveling 
wave) has a simple sinusoidal form.
But how do we interpret ψ(x,t) physically?



Interpretation of the wave function

We have seen that any wave can be described by a 
wave function ψ(x,t).

For any wave, we define the wave’s intensity I to be:

where the asterisk signifies complex conjugation. Note 
that for a plane wave this is the square of A (a constant):

Let’s use the concept of intensity and a simple thought 
experiment to get some intuition about the physical 
meaning of the de Broglie wave function.



The double slit experiment

Experiment: a device sprays an electron beam at a wall 
with two small holes in it. The size of the holes is close to 
the electrons’ wavelength λdB.

Behind the wall is a screen 

with an electron detector.
As electrons reach the 

screen, the detector counts 

up how many electrons strike 

each point on the wall.
Using the data, we plot the 

intensity I(x): the number of 

electrons arriving per second 

at position x.



The double slit experiment

https://www.youtube.com/watch?v=qCmtegdqOOA

https://www.youtube.com/watch?v=qCmtegdqOOA


The double slit experiment

The classical result:

If electrons are classical particles, we expect the intensity 
in front of each slit to look like a bell curve, peaked directly 
in front of each slit opening.

When both slits are open, the total intensity I1+2 on the 
screen should just be the sum of the intensities I1 and I2 
when only one or the other slit is open.



The double slit experiment

In practice:

When we perform the real experiment, a strange thing 
happens.

When only one slit is open, we get the expected intensity 
distributions.

But when both slits are open, a wavelike diffraction pattern 
appears.

Apparently, the electrons are acting like waves in this 
experiment.



Wave function interpretation

In terms of waves, the wave function of an electron at the screen 
when only slit 1 is open is ψ1, and when only slit 2 is open it’s ψ2.
Hence, the intensity when only one slit is open is either I1=|ψ1|2 

or I2=|ψ2|2.
With both slits open, the intensity at the screen is I1+2=|ψ1+ψ2|2, 

not just I1+I2!  
When we add the wave functions, we get constructive and 

destructive interference; this is what creates the diffraction 
pattern. 



Wave function and probability

If electrons create a diffraction pattern, 
they must be waves. But when they hit 
the screen, they are detected as 
particles. 
How do we interpret this?

M. Born: Intensity I(x)=|ψ(x,t)|2 actually 
refers to probability a given electron 
hits the screen at position x.

In QM, we don’t specify the exact 
location of an electron at a given time, 
but instead state by I(x)=|ψ(x,t)|2 the 
probability of finding a particle at a 
certain location at a given time.

Diffraction pattern from an 
actual electron double slit 
experiment.  Notice how the 
interference pattern builds 
particle by particle.

The probabilistic interpretation gives 

physical meaning to ψ(x,t): it is the 

“probability amplitude” of finding a 

particle at x at time t.



Is there a contradiction?

We now understand the wave function in terms of the 
probability of a particle being someplace at some time.
However, there is another problem to think about.

Since the electrons diffract, they show wavelike behavior; 
but when they hit the screen, they interact like particles. 
And if they are particles, then shouldn't they only go 
through one slit at a time?

If this is the case, how can an electron’s wave undergo 
double slit interference when the electron only goes 
through one slit?
Seems impossible…
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However, there is another problem to think about.

Since the electrons diffract, they show wavelike behavior; 
but when they hit the screen, they interact like particles. 
And if they are particles, then shouldn't they only go 
through one slit at a time?

If this is the case, how can an electron’s wave undergo 
double slit interference when the electron only goes 
through one slit?
Seems impossible…

To test what’s going on, suppose we slow down the electron 
gun so that only one electron at a time hits the wall.

We then insert a device over each slit that tells us if the 
electron definitely went through one slit or the other.



Destroying the interference pattern

We add electron detectors that shine light across each slit.
When an electron passes through one of the slits, it breaks 
the beam, allowing us to see whether it traveled through slit 1 
or slit 2 on its way to the backstop.

Result: if we try to detect the electrons at one of the two slits 
in this way, the interference pattern is destroyed! In fact, the 
pattern now looks like the one expected for classical particles.

!



Complementarity

Why did the interference pattern disappear?
Apparently, when we used the light beam to localize 
the electron at one slit, we destroyed something in the 
wave function ψ(x,t), that contributes to interference.

Principle of Complementarity (N. Bohr): if a 
measurement proves the wave character of radiation or 
matter, it is impossible to prove the particle character 
in the same measurement, and vice-versa.

The link between the wave and particle models is 
provided by the probability interpretation of ψ(x,t), in 
which an entity’s wave gives the probability of finding 
its particle at some position.



Schrodinger’s cat



The Uncertainty Principle

There seems to be some fundamental constraint on QM 
that prevents matter from acting wave-like and particle-
like simultaneously.
Moreover, it appears that our measurements can 
directly affect whether we observe particle or wavelike 
behavior.

These effects are encapsulated in the Uncertainty 
Principle.

Heisenberg: quantum observations are fundamentally 
limited in accuracy.



The Uncertainty Principle (1)

According to classical physics, we can (at the same 
instant) measure the position x and momentum px of a 
particle to infinite accuracy if we like. We’re only limited 
by our equipment.

However, Heisenberg’s uncertainty principle states that 
experiment cannot simultaneously determine the exact 
values of x and px.

Quantitatively, the principle states that if we know a 
particle’s momentum px to an accuracy Δpx, and its 
position x to within some Δx, the precision of our 
measurement is inherently limited such that: 



Using the Uncertainty Principle

Does the Uncertainty Principle (UP) mean that we can’t 
measure position or momentum to arbitrary accuracy?

No. The restriction is not on the accuracy to which x and px 
can be measured, but rather on the product ΔpxΔx in a 
simultaneous measurement of both.

The UP implies that the more accurately we know one 
variable, the less we know the other. If we could measure a 
particle’s px to infinite precision, so that Δpx=0, then the 
uncertainty principle states:

In other words, after our measurement of the particle’s 
direction (momentum), we lose all information about its 
position!



The Uncertainty Principle (2)

The Uncertainty Principle has a 
second part related to measurements 
of energy E and the time t needed for 
the measurements. It states that:

Example: estimate the mass of virtual 
particles confined to the nucleus (see 
Lecture 2 on estimating Yukawa’s meson 
mass).

Example: Δt could be the time during 
which a photon of energy spread ΔE is 
emitted from an  atom.

This effect causes spectral lines in 
excited atoms to have a finite 
uncertainty Δλ (“natural width”) in 
their wavelengths.

Atomic spectral lines, the 
result of transitions that 
take a finite time, are not 
thin “delta function” 
spikes, but actually have 
a natural width due to the 
Uncertainty Principle. 



Uncertainty and the double slit

Now that we know the UP, we can 
understand why we can’t “beat" the 
double slit experiment and 
simultaneously observe wave and 
particle behavior.

Basically, our electron detector Compton 
scatters light off of incoming electrons.

When an electron uses one of the slits, 
we observe the scattered photon and 
know that an electron went through that 
slit.

Unfortunately, when this happens, the 
photon transfers some of its momentum 
to the electron, changing its momentum.

Detection photon 
Compton scatters off an 
incoming electron, 
transferring its 
momentum. 



If we want to know the slit used, the photon’s wavelength 
must be smaller than the spacing between the two slits.

Hence, the photon has to have a large momentum 
(remember, λ=h/p).

As a result, a lot of momentum gets transferred to the 
electron - enough to effectively destroy the diffraction 
pattern.

Uncertainty and the double slit

If the wavelength of the 
scattering photon is small 
enough to pinpoint the 
electron at one of the slits, 
the resulting momentum 
transfer is large enough to 
“push” the electron out of 
the interference minima and 
maxima.  The diffraction 
pattern is destroyed.



If we try to pinpoint the electron at one of the slits, we 
change its motion, and the interference pattern 
vanishes.

Can you think of a way to get around this problem?

Uncertainty and the double slit



If we try to pinpoint the electron at one of the slits, we 
change its motion, and the interference pattern 
vanishes.

Can you think of a way to get around this problem?
We could use lower energy photons…
It turns out, that just when the photon momentum gets 
low enough that electron diffraction reappears, the 
photon wavelength becomes larger than the separation 
between the two slits (see Feynman Lectures on 
Physics, Vol. 3).

This means we can no longer tell which slit the electron 
went through!

Uncertainty and the double slit



Why the Uncertainty Principle

Let’s review what we have said so far about matter waves 
and quantum mechanics.

Elementary particles have associated matter waves ψ(x,t). 
The intensity of the wave, I(x)=|ψ(x,t)|2, gives the 
probability of finding the particle at position x at time t.

However, QM places a firm constraint on the simultaneous 
measurements we can make of a particle’s position and 
momentum: ΔpxΔx≥ħ/2.

This last concept, the Uncertainty Principle, probably seems 
very mysterious. However, it turns out that it is just a 
natural consequence of the wave nature of matter, for all 
waves obey an Uncertainty Principle!

Let’s take a look… 



Probabilities and waves, again

Consider a particle with de Broglie wavelength λ.
Defining the wave number k = 2π/λ and the angular 
frequency 

ω= 2πν, the wave function for such a particle could be 
(conveniently) written: 

If the wavelength has a definite value λ there is no 
uncertainty Δλ, and hence p=h/λ is also definite. 
Such a wave is a sinusoid that extends over all values of x 
with constant amplitude. 

If this is the case, then the probability of finding the particle 
should be equally likely for any x; in other words, the 
location of the particle is totally unknown. Of course, this 
should happen, according to the Uncertainty Principle. 



Wave functions should be finite

If a wavefunction is infinite in extent, like ψ =Asin2π(x/λ-νt), 
the probability interpretation suggests that the particle 
could be anywhere: Δx=∞. 

If we want particles to be localized to some smaller Δx, we 
need one whose amplitude varies with x and t, so that it 
vanishes for most values of x.  But how do we create a 
function like this?



Building wave packets

In order to get localized particles, their corresponding 
wave functions need to go to zero as x→±∞.  Such a 
wave function is called a wave packet. 

It turns out to be rather easy to generate wave packets: 
all we have to do is superimpose, or add up, several 
sinusoids of different wavelengths or frequencies. 

Recall the Principle of Superposition: any wave ψ can be 
built up by adding two or more other waves. 

If we pick the right combination of sinusoids, they will 
cancel at every x other than some finite interval 
(Fourier Theorem).



Superposition example: beats

You may already know that adding two sine waves of 
slightly different wavelengths causes the phenomenon 
of beats (see below). 

A typical example: using a tuning fork to tune a piano 
string.  If you hear beats when you strike the string and 
the tuning fork simultaneously, you know that the string 
is slightly out of tune.

The sum of two sine waves of 
slightly different wavelengths 
results in beats.  The beat 
frequency is related to the 
difference between the 
wavelengths. This is a 
demonstration of how adding 
two sinusoids creates a wave 
of varying amplitude.



Superimposing more sinusoids

Now, let’s sum seven sinusoidal waves of the form: 

where k=2π/λ and A9= A15=1/4, A10= A14=1/3, A11= A13=1/2, 
and A12=1. 

We get a function that is starting to look like a wave packet; 
however, as you can see, it’s still periodic, although in a 
more complicated way than usual: 

Summing up sinusoids to get 
another periodic function.  This 
is an example of Fourier’s 
Theorem: any periodic function 
may be generated by summing 
up sines and cosines.



The continuum limit

So, evaluating a sum of sinusoids like:

where k is an integer that runs between k1 and k2, we can 
reproduce any periodic function. 
If we let k run over all values between k1 and k2 – that is, we 
make it a continuous variable –then we can finally 
reproduce a finite wave packet.

By summing over all values of k in an interval dk= 
k1-k2, we are essentially evaluating the integral 

In such a “continuous sum”, the component 
sinusoids are all in phase near x=0.  Away from this 
point, in either direction, the components begin to 
get out of phase with each other.  If we go far 
enough out, the phases of the infinite number of 
components become totally random, and cancel out 
phases of component sinusoids completely. 



Connection to uncertainty

So, we can sum up sinusoids to get wave packets. 
What does this actually mean?

Intuition: we want a wave function that is non-zero only 
over some finite interval Δx.

To build such a function, we start adding sinusoids 
whose inverse wavelengths, k=2π/λ, take on values in 
some finite interval Δk. 

Here’s the point: as we make the interval Δk bigger, the 
width of the wave packet Δx gets smaller. This sounds 
like the Uncertainty Principle!



Wave-related uncertainties

As we sum over sinusoids, making the range of k 
values Δk larger, we decrease the width of the resulting 
function. 

In fact, there is a fundamental limit here that looks just 
like the position-momentum uncertainty relation. 

For any wave, the minimum width Δx of a wave packet 
composed from sinusoids with range Δk is Δx=1/(2Δk), 
or: 

There is a similar relation between time and frequency:



Connection to QM

If k=2π/λ, and λ=h/p, then the uncertainty relation for 
waves in general tells us: 

We recover the Heisenberg uncertainty relation! 
By a similar argument, we can show that the frequency-
time uncertainty relation for waves implies the energy-time 
uncertainty of quantum mechanics. 

The Uncertainty Principle arises as a consequence of the 
wave nature of particles! 



Applications to Particle Physics

A particle can be described as a superposition of other 
particles (e.g. neutrino oscillations).

Since trajectories are not well defined, we need to 
consider all processes (Feynman diagrams) consistent 
with the observed result. The amplitudes of these 
processes can interfere, enhancing or suppressing the 
total probability.

The production of new particles from collisions or 
decays of other particles is subject to the probabilistic 
nature of Quantum Mechanics. We call this probabilities 
branching ratios.

Schrödinger's equation is valid for non-relativistic 
particles. In Particle Physics we use the Dirac equation 
for spin = ½ particles and the Klein-Gordon equation for 
spin = 0 particles. 



Applications to Particle Physics

A particle can be described as a superposition of other 
particles (e.g. neutrino oscillations).



Applications to Particle Physics

Since trajectories are not 
well defined, we need to 
consider all processes 
(Feynman diagrams) 
consistent with the 
observed result. The 
amplitudes of these 
processes can interfere, 
enhancing or suppressing 
the total probability.



Applications to Particle Physics

The production of new particles from collisions or 
decays of other particles is subject to the probabilistic 
nature of Quantum Mechanics. We call this probabilities 
branching ratios.



Applications to Particle Physics

Schrödinger's equation is valid for non-relativistic 
particles. In Particle Physics we use the Dirac equation 
for spin = ½ particles and the Klein-Gordon equation for 
spin = 0 particles. 



Summary

Quantum mechanics is the physics of small objects.
Its typical energy scale is given by Planck’s constant.

In QM, variables like position, momentum, energy, etc. 
tend to take on discrete values (often proportional to h). 

Matter and radiation can have both particle and 
wavelike properties, depending on the type of 
observation. 

But by the Uncertainty Principle, objects can never be 
wavelike or particle-like simultaneously.

Moreover, it is the act of observation that determines 
whether matter behaves like a wave or a particle.
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