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Course policies
. Classes from 10:00 AM to 12:30 PM (10 min break at ~ 11:10 AM).

. Attendance record counts.
~Up to four absences
~Lateness or leaving early counts as half-absence

—Send email notifications of all absences to shpattendance@columbia.edu.

. Please, no cell phones during class

. Please, ask questions!

. Lecture materials + Research Opportunities + Resources to become a
particle physicist

. https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram




Schedule

Month Day Lecture Teacher
: | o oot Veon_i
29 | s  Darticle Phvsi Veon_i
Oectober 6 | Speeial Relatrvity Edward
13 | Quantum Mechanics Edward
20 | Experimental Methods Edward
27 | The Standard Model - Overview Yeon-jae
November 3 | The Standard Model - Limitations Yeon-jae
10 | Neutrino Theory Edward
17 | Neutrino Experiment Edward
24 | No classes, SHP break
December 1 | LHC and Experiments Yeon-jae
8 | The Higgs Boson and Beyond Yeon-jae
15 | Particle Cosmology Edward




« The Admissions Office of Columbia College and the School
of Engineering will be conducting special information
sessions and campus tours for SHP students and their
parents:

e Saturday, October 27, 2018 at 12:45 pm
One house Information session in room 301 Pupin followed by
an optional campus tour.

e Saturday, November 17, 2018 at 12:45 pm
One house Information session in room 301 Pupin followed by
an optional campus tour.

* No RSVP necessary — All Welcome.



¢ Quantum phenomena:
-Quantization: how Nature comes in discrete packets
-Particle-wave duality.
-Understanding quantum phenomena in terms of waves.
-The Schrédinger Equation

e Interpreting quantum mechanics (QM):
-The probabilistic interpretation of quantum mechanics
-The Uncertainty Principle and the limits of observation.

e Understanding the Uncertainty Principle:
-Building up wave packets from sinusoids.
-Why the Uncertainty Principle is a natural property of waves.



e QM is the study of physics at very small scales -
specifically, when the energies and momenta of a system are
of the order of Planck’s constant:

h = h/2mT = 6.6%10'%eV.s
e On the quantum level, “particles” exhibit a number of non-
classical behaviors:

1. Discretization (quantization) of energy, momentum charge, spin, etc.
Most quantities are multiples of e and/or h.

2. Particles can exhibit wavelike effects: interference, diffraction, ...

3. Systems can exist in a superposition of states.



Quantization of Electric Charge

e Recall:

e J.J. Thomson (1897): electric
charge is corpuscular, “stored” in
electrons.

e R. Milikan (1910): electric
charge is quantized, always
showing up in integral multiples
of e.

e Milikan’'s experiment:
measuring the charge on ionized
oil droplets.

R.A. Millikan
Nobelprize.org



e The experiment entailed
balancing the downward
gravitational force with the
upward buoyant and electric
forces on tiny charged droplets
of oil suspended between two
metal electrodes.

e Since the density of the oil was

known, the droplets’ masses could
be determined from their observed

radii.
e Using a known electric field,

Milikan and Fletcher could
determine the charge on oil

droplets in mechanical equilibrium.
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e By repeating the experiment [
for many droplets, they k—
confirmed that the charges were
all multiples of some i
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e They calculated it to be
1.5924(17)x10-1° C, within 1% of
the currently accepted value of
1.602176487(40)x10-1° C.

e They proposed that this was
the charge of a single electron.




® Recall:

e M. Planck (1900): blackbody radiation
spectrum can be explained if light of
frequency v comes in quantized energy
packets, with energies of hv.
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Radiated Intensity
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oA. Einstein (1905): Photoelectric effect can only be theoretically

understood if light is corpuscular.

eN. Bohr (1913): discrete energy spectrum of the hydrogen atom can
be explained is the electron’s angular momentum about the nucleus is

quantized.

eln an atom, angular momentum mvr always comes in integral

multiples of h = h/2m.
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Quantization of Spin

® The particle property called spin, is also
quantized in units of h.

oAll particles have spin: it is an inherent property,
like electric charge, or mass.

oA magnetic phenomenon, spin is very important.

olf you understand bar magnets, you (somewhat)
understand spin.

eSpin is closely related to Pauli’s Exclusion
Principle (Spin Statistic Theorem), which relates
the change in sign of the QM wavefunction when
two identical particles are exchanged in a system
(more on this later...).




® How do particles get a magnetic moment?

eEnter spin. Imagine an electron as a rotating
ball of radius R, with its charge distributed
over the volume of the sphere.

eThe spinning sets up a current loop around Anguiar velooly o
the rotation axis, creating a small magnetic
dipole: like a bar magnet!

eThe spinning ball gets a dipole moment:

—

— 4 —-
l.l — __NR4pw oC — S Sphere has total charge -¢,
3 spread over the surface
with uniform density -0

eSpin S is a vector that points along the axis
of rotation (by the "right-hand rule”). The
moment y points in the opposite direction.




Spin-magnetism analogy

® To some extent, all elementary particles behave like tiny bar
magnets, as if they had little N and S magnetic poles.

N N N S longitudinal

~component
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S\, transvefse
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Two bar magnets set side by side will
try to anti-align such that the north and
south poles ‘match up’.

Similarly, an object with a magnetic moment
will try to anti-align itself with a magnetic field.

e Jargon: if a particle behaves this way in a magnetic field, it is said to
have a non zero magnetic dipole moment . In a B field, such a particle

will feel a force: _ -
F=v(z- B)



® If an electron is a spinning ball of charge, we
understand how its magnetic moment arises.

eThis is still classical physics: the spin axis may
point in any direction. But, Nature is very
different!

0. Stern and W. Gerlach (1921):

eWhile measuring Ag atom spins in a B field, they
found that spin always aligns in two opposite
directions, "up" and “down”, relative to the field.

eMoreover, the magnitude of the spin vector is
quantized in units of h.

oAll elementary particles behave this way: their
spins are always quantized, and when measured
only point in certain directions (“space
guantization”).

-

Classically, an electron’s spin orientation can take on
a continuum of values; the axis of rotation can point
anywhere it likes.

Image © Hyperphysics

But the classical view is wrong, because measured
spins always seem to line up in certain preferred
directions. This is called a spin-1/2 particle.




Stern & Gerlach experiment

e https://www.youtube.com/watch?v=rg4Fnag4V-E




Stern & Gerlach experiment

0. Stern and W. Gerlach (1921):

Inhomogeneous
magnetic field
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e If elementary particles like the electron are actually little spinning
spheres of charge, why should their spins be quantized in magnitude
and direction?

e(lassically, there is no way to explain this behavior.

eln 1925, S. Goudsmidt and G. Uhlenbeck realized that the classical
model just cannot apply: electrons do not spin like tops; magnetic
behavior must be explained some other way.

eModern view: spin is an intrinsic property of all elementary particles,
like charge or mass.

o[t is a completely quantum phenomenon, with no classical analog.

Like most other quantum mechanical
properties, allowed spin values are restricted
to certain numbers proportional to h.

The classically expected continuum of values
is not observed.



eGeneral rule in QM:

eMeasurable quantities tend to come in integral (or half-integral)
multiples of fundamental constants.

eAlmost all of the time, Planck’s constant is involved in the
quantized result. It's truly a universal, fundamental constant of
Nature.

eQuestion: why don't we observe quantization at macroscopic
scales?



eGeneral rule in QM:

eMeasurable quantities tend to come in integral (or half-integral)
multiples of fundamental constants.

eAlmost all of the time, Planck’s constant is involved in the
quantized result. It's truly a universal, fundamental constant of
Nature.

eQuestion: why don't we observe quantization at macroscopic
scales?

eAnswer: due to the smallness of Planck's constant.

eThis is analogous to Special Relativity, where the small size of the
ratio v/c at everyday energy scales prevents us from observing the
consequences of SR in the everyday world.



eObservation tells us that physical quantities are not continuous
down to the smallest scales, but tend to be discrete.

eBut QM has another surprise: if you look small enough, matter -
that is, “particles” - start to exhibit wavelike behavior.

e\We have already seen hints of this idea.

eLight can behave like a wave, and it can behave like a particle,
depending on the circumstances...



More Quantum weirdness

eObservation tells us that physical quantities are not continuous
down to the smallest scales, but tend to be discrete.

eBut QM has another surprise: if you look small enough, matter -
that is, “particles” - start to exhibit wavelike behavior.

e\We have already seen hints of this idea.

eLight can behave like a wave, and it can behave like a particle,
depending on the circumstances...
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olL. de Broglie (1924) suggested that the wave-particle behavior
of light might apply equally well to matter.

eJust as a photon is associated with a light wave, so an electron
could be associated with a matter wave that governs its motion.



L. de Broglie
Nobelprize.org

The de Broglie hypothesis

ede Broglie's suggestion was a very bold statement
about the symmetry of Nature.

eProposal: the wave aspects of matter are related to its
particle aspects in quantitatively the same way that the
wave and particle aspects of light are related.

eHypothesis: for matter and radiation, the total energy E
of a particle is related to the frequency v of the wave
associated with its motion by:

E=nhv

olf E=pc (recall SR), then the momentum p of the
particle is related to the wavelength A of the associated
wave by the equation:

p = h/A



L. de Broglie
Nobelprize.org

The de Broglie hypothesis

op = h/A or A=h/p — de Broglie relation

o/t holds even for massive particles.

oIt predicts the de Broglie wavelength of a matter wave
associated with a material particle of momentum p.

group velocity
—

de Broglie hypothesis: particles are
also associated with waves, which
are extended disturbances in space U
and t/ime.




eQuestion: if the de Broglie hypothesis is correct, why don't
macroscopic bodies exhibit wavelike behaviors?



eQuestion: if the de Broglie hypothesis is correct, why don't
macroscopic bodies exhibit wavelike behaviors?

eSmallness of h!

Try yourself:
e\What is your de Broglie wavelength?

e\What is the de Broglie wavelength of a
100 eV/c electron?

h = 6.62606957(29) x1034J s
h =4.13566733(10) x 107> eV s



eMacroscopic particles do not have measurable de Broglie
wavelengths, but electron wavelengths are about the
characteristic size of X-rays.

eS0, we have an easy test of the de Broglie hypothesis:

eCheck if electrons exhibit wavelike behavior (diffraction,
interference, ...) under the same circumstances that X-rays do.

oFirst, let's talk a little bit about X-rays and X-ray diffraction.



The first medical rontgengram:
X - rays a hand with buckshot, 1896.

o\W. Rdntgen (1895): discovers X-rays, high energy photons
with typical wavelengths near 0.1 nm.

eCompared to visible light (A between 400 and 750 nm), X-rays
have extremely short wavelengths and high penetrating power.

eEarly in the 20t century, physicists proved that X-rays are light
waves by observing X-ray diffraction from crystals.



X-ray crystallography

eHow it's done: take X-rays and shoot
them onto a crystal specimen.

eSome of the X-rays will scatter
backwards off the crystal.

eWhen film is exposed to the
backscattered X-rays, geometric
patterns emerge.

eln this image, the dark spots
correspond to regions of high intensity
(more scattered X-rays).

eThe geometry of the pattern is
characteristic of the structure of the
crystal specimen.

eDifferent crystals will create different
scattering patterns.

Negative image of an X-ray diffraction
pattern from a beryllium aluminum
silicate crystal. The X-rays seem to
scatter only in preferred directions



e\What is the process behind X-ray
crystallography?

e\Why do X-rays appear to scatter
off crystals in only certain
directions?

eThis behavior can only be
understood if X-rays are waves.

eThe idea: think of the crystal as a
set of semi-reflective planes.

eThe X-rays reflect from different
planes in the crystal, and then
constructively and destructively
interfere at the film screen.

Crystal surface

...but for certain angles of incidence, the X-rays reflect off lattice
planes such that they travel back to the film screen and
constructively interfere.




Basic wave concepts

Wavelength is easy to visualize;
it is the distance over which the
wave starts to repeat.

oTO unqlerstand waves in QM, |~-—*w'ﬂ*a'-'f;::%-ngth s
let’'s review some basic wave Am,,..,uge —

|7 S, ),

concepts. B

= frequency

e\Wavelength A: the repeat
distance of a wave in space.
ePeriod T: the "repeat distance”
of a wave in time.

eFrequency v: the inverse of the
period; v = 1/T.

eAmplitude A: the wave's
maximum displacement from

T = Period

For an object executing periodic
motion, like a mass on a spring,

the period is just the time interval
over which the wave starts to repeat.

amplitude

equilibrium. yf, =
e(lassically, this determines a A ————rrr
1.t . Mass shown at maximum displacement
wave s IntenSIty‘ gg:;:::t’:lum Equilibrium | | from equilibrium, not
' line

the total swing.




Waves can add or cancel,

' . 1 depending on their relative phase.
imagining uniform circular motion
on a unit circle.

ePrinciple of Superposition: you can add up any number of
waves (sinusoids) to get another wave.

eThe resultant wave may be larger or smaller than its components,
depending on their relative phase angles.

ePhases can be understood in terms of motion on the unit circle.
eHence, waves interfere, canceling each other at certain locations.

elnterference is what gives rise to the light and dark spots in the
X-ray diffraction pattern.



eConsider two X-ray beams
reflecting from two crystal planes a
distance d >> 0.1nm apart.

eThe wave reflecting from the lower
plane travels a distance 2| farther
than the upper wave.

olf an integral number of
wavelengths nA just fits into the
distance 2|, the two beams will be In
phase and will constructively
interfere.

eOnly certain incident angles lead to

constructive interference:

M =2/=2dsin@
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Electron diffraction

eScattering electrons off crystals
also creates a diffraction pattern!

eElectron diffraction is only
possible if electrons are waves.

eHence, electrons (matter
particles) can also behave
as waves.

Diffraction pattern created by
scattering electrons off a crystal.
(This is a negative image, so the
dark spots are actually regions of
constructive interference.) Electron
diffraction is only possible if
electrons are waves.



Observation of electron diffraction

eElectron diffraction was first observed in a famous 1927
experiment by Davisson and Germer.

eThey fired 54 eV electrons at a nickel target and observed
diffraction peaks consistent with de Broglie's hypothesis.

Theory
A= =167 Rfor54V

Expeériment
Pathlength difference
dsin® = 2.158in50=A=1.654

1924 1927 1929

de Broglie's Davisson- Nw%rm o o o o
experiment de Broglie




Electron diffraction demo

https:.//www.youtube.com/watch?v=IYnU4T3jbgA




Understanding matter waves

elLet's think a little more about de Broglie waves.

eln classical physics, energy is transported either by waves or
by particles.

eParticle: a definite, localized bundle of energy and
momentum, like a bullet that transfers energy from gun
to target.

eWave: a periodic disturbance spread over space and time,
like water waves carrying energy on the surface of the ocean.

eln quantum mechanics, the same entity can be described by
both a wave and a particle model:

oElectrons scatter like localized particles, but they can also
diffract like extended waves.



The wave function

eParticles <« waves.
eHow do we represent wave-particles mathematically?

eClassically: a particle can be represented solely by its position x
and momentum p. If it is acted on by an external force, we can find
x and p at any time by solving a differential equation like:
md_z)r: E'E: F (Newton's 2ndLaw)
ar dt
oA wave is an extended object, so we can't represent it by the pair
of numbers (x,p).

elnstead, for a wave moving at velocity c=Av, we define a "wave
function” Yi(x,t) that describes the wave’'s extended motion in time
and space.

eTo find Y(x,t) at any position and time, we solve a differential
equation like: 0% 1 8%
oxX ¢ oF

Something similar
applies to particles...

(wave equation)



Wave equation for quantum waves

eTime evolution of waves can usually be found by solving a
wave equation like:

oy 1 0%y

gx ¢ oF
oE. Schrodinger (1926) found that quantum particles moving
in a 1D potential V(x) obey the partial differential equation:

in D =(— SLan V(X)}y(x,r)

ol 2mox°

vThis expression involves h, the usual QM parameter.

vIt also involves the number i, which means that the waves y(xt)
are complex.



The de Broglie wave

eParticles can be described by de Broglie waves of wavelength
A=h/p.

eFor a particle moving in the x direction with momentum p=h/A
and energy E=hv, the wave function can be written as a simple
sinusoid of amplitude A:

W (X, [)= Asin Zﬂ[;—Vf]

eThe propagation velocity c of this wave is:

C=Av



Quantum waves summarized

eAn elementary particle like a photon can act like a particle
(Compton effect, photoelectric effect) or a wave (diffraction),
depending on the type of experiment / observation.

olf it's acting like a particle, the photon can be described by its
position and momentum x and p. If it's acting like a wave, we
must describe the photon with a wave function y(x,t).

eTwo waves can always superpose to form a third: ¢ = {1 + {o.
eThis is what gives rise to interference effects like diffraction.

eThe wave function for a moving particle (a traveling wave) has
a simple sinusoidal form.

eBut how do we interpret Yi(x,t) physically?



Interpretation of the wave function

e\We have seen that any wave can be described by a wave
function P(x,t).

eFor any wave, we define the wave's intensity I to be:

[=lpx " = [ ax g O'y(x )

where the asterisk signifies complex conjugation. Note that
for a plane wave this is the square of A (a constant):

=l (x0 =|A"

elLet's use the concept of intensity and a simple thought
experiment to get some intuition about the physical meaning
of the de Broglie wave function.



The double slit experiment

eExperiment: a device sprays an electron beam at a wall with two
small holes in it. The size of the holes is close to the electrons’
wavelength Ads.

eBehind the wall is a screen with X

an electron detector.
Movable

eAs electrons reach the screen, detector
the detector counts up how many

electrons strike each point on the Slit 1

g
;
L
i
‘s
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eUsing the data, we plot the Electron gun F
intensity I(x): the number of 4
4
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electrons arriving per second
at position x. Wall Backstop
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The double slit experiment

https.//www.youtube.com/watch?v=gCmtegdqOOA




The double slit experiment

eThe classical result:

X PV X X
Movable 4
detector /] / 1
=
»T St 4 Slit 1 open !1 +2
T__I .-"__:.:-a‘__ - V
?_J%{‘::;_sﬁti'ﬁ_ atabadiall -
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Electron gun - § V|
% /“ /
% /1 2
A /1 _
? p Slit 2 open
Wall Backstop lits 1 and 2 open

olf electrons are classical particles, we expect the intensity in front
of each slit to look like a bell curve, peaked directly in front of each
slit opening.

eWhen both slits are open, the total intensity I1+2 on the screen
should just be the sum of the intensities I1 and I> when only one
or the other slit is open.



The double slit experiment

eln practice:

Wall

Movable
detector =

SRR R AT T T
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Slits 1 and 2 open

e\When we perform the real experiment, a strange thing happens.

e\When only one slit is open, we get the expected intensity distributions.

eBut when both slits are open, a wavelike diffraction pattern appears.

eApparently, the electrons are acting like waves in this experiment.



Wave function interpretation

Movable
detector =

Electron gun
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eln terms of waves, the wave function of an electron at the screen when
only slit 1 is open is Y1, and when only slit 2 is open it's o.

eHence, the intensity when only one slit is open is either I1=|{n|* or
L=|y2)?

eWith both slits open, the intensity at the screen is I1+2=|{r1+{2|?, not
just [1+12!

eWhen we add the wave functions, we get constructive and destructive
interference; this is what creates the diffraction pattern.



Wave function and probability

olf electrons create a diffraction pattern, they must
be waves. But when they hit the screen, they are
detected as particles.

eHow do we interpret this?

oM. Born: Intensity I(x)=|s(x,t)|*> actually refers
to probability a given electron hits the screen
at position x.

eIn QM, we don't specify the exact location of

an electron at a given time, but instead state

by I(x)=|W(x,t)|? the probability of finding a particle
at a certain location at a given time.

The probabilistic interpretation gives
physical meaning to Y(x,t): it is the
"probability amplitude” of finding a
particle at x at time t.

(a) After 28 electrons

(e) After 10,000 slectrons

Diffraction pattern from an actual
electron double slit experiment.
Notice how the interference pattern
builds particle by particle.




Is there a contradiction?

e\We now understand the wave function in terms of the probability
of a particle being someplace at some time.

eHowever, there is another problem to think about.

eSince the electrons diffract, they show wavelike behavior; but when
they hit the screen, they interact like particles. And if they are particles,
then shouldn't they only go through one slit at a time?

olf this is the case, how can an electron’s wave undergo double slit
interference when the electron only goes through one slit?

eSeems impossible...



Is there a contradiction?

e\We now understand the wave function in terms of the probability
of a particle being someplace at some time.

eHowever, there is another problem to think about.

eSince the electrons diffract, they show wavelike behavior; but when
they hit the screen, they interact like particles. And if they are particles,
then shouldn't they only go through one slit at a time?

olf this is the case, how can an electron’s wave undergo double slit
interference when the electron only goes through one slit?

eSeems impossible...

eTo test what's going on, suppose we slow down the electron gun
so that only one electron at a time hits the wall.

e\We then insert a device over each slit that tells us if the electron
definitely went through one slit or the other.



Destroying the interference pattern
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eWe add electron detectors that shine light across each slit.

e\When an electron passes through one of the slits, it breaks the beam,
allowing us to see whether it traveled through slit 1 or slit 2 on its way
to the backstop.

eResult: if we try to detect the electrons at one of the two slits in this I
way, the interference pattern is destroyed! In fact, the pattern now
looks like the one expected for classical particles.



Complementarity

eWhy did the interference pattern disappear?

eApparently, when we used the light beam to localize the
electron at one slit, we destroyed something in the wave
function Y(x,t), that contributes to interference.

ePrinciple of Complementarity (N. Bohr): if a measurement
proves the wave character of radiation or matter, it is impossible
to prove the particle character in the same measurement, and
vice-versa.

eThe link between the wave and particle models is provided by
the probability interpretation of Y(x,t), in which an entity’s wave
gives the probability of finding its particle at some position.



Schrodinger’s cat




The Uncertainty Principle

eThere seems to be some fundamental constraint on QM

that prevents matter from acting wave-like and particle-like
simultaneously.

eMoreover, it appears that our measurements can directly
affect whether we observe particle or wavelike behavior.

eThese effects are encapsulated in the Uncertainty Principle.

eHeisenberg: quantum observations are fundamentally
limited in accuracy.



The Uncertainty Principle (1)

eAccording to classical physics, we can (at the same instant)
measure the position x and momentum px of a particle to
infinite accuracy if we like. We're only limited by our equipment.

eHowever, Heisenberg's uncertainty principle states that
experiment cannot simultaneously determine the exact values
of x and px.

eQuantitatively, the principle states that if we know a particle’s
momentum px to an accuracy Apx and its position x to within
some Ax, the precision of our measurement is inherently limited
such that:

ADAX> 12



Using the Uncertainty Principle

eDoes the Uncertainty Principle (UP) mean that we can’t measure
position or momentum to arbitrary accuracy?

eNo. The restriction is not on the accuracy to which x and px can be
measured, but rather on the product ApxAx in a simultaneous
measurement of both.

eThe UP implies that the more accurately we know one variable,
the less we know the other. If we could measure a particle’s pxto
infinite precision, so that Apx=0, then the uncertainty principle

states: >h/2_h/2_

Ap, O

AX

o0

eln other words, after our measurement of the particle’s direction
(momentum), we lose all information about its position!



The Uncertainty Principle (2)

eThe Uncertainty Principle has a second

10
part related to measurements of energy i
E and the time t needed for the i | B .
measurements. It states that: e | | Wigner
line shape

AEAL>h/2 il [ 5
eExample: estimate the mass of virtual particles / \
confined to the nucleus (see Lecture 2 on = / \
estimating Yukawa'’s meson mass). NN W
eExample: At could be the time during which Eo =myC’
a photon of energy spread AE is emitted from , ,
an atom. Atomic spectral lines, the result

of transitions that take a finite
eThis effect causes spectral lines in excited time, are not thin “delta function”

atoms to have a finite uncertainty AA spikes, but actually have a natural
width due to the Uncertainty

(“natural width”) in their wavelengths. Principle.



Uncertainty and the double slit

o

\&wi‘:fmmer
[
RN
e BRSNS

Slit1 RO
eNow that we know the UP, we can understand
why we can't "beat" the double slit experiment PR Iy enatio
and simultaneously observe wave and particle
behavior. »

Incoming electron

eBasically, our electron detector Compton

/

scatters light off of incoming electrons. & N
k. \\
. Ob %
e\When an electron uses one of the slits, we m;f;ﬁ;fff\\\
observe the scattered photon and know that phaioh. I8 eceiver

an electron went through that slit.

eUnfortunately, when this happens, the photon Wall
transfers some of its momentum to the electron,

changing its momentum. Detection photon Compton

scatters off an incoming
electron, transferring its
momentum.



Uncertainty and the double slit

olf we want to know the slit used, the photon’s wavelength must
be smaller than the spacing between the two slits.

eHence, the photon has to have a large momentum (remember,
A=h/p).

eAs a result, a lot of momentum gets transferred to the electron
- enough to effectively destroy the diffraction pattern.

If the wavelength of the scattering
photon is small enough to pinpoint
the electron at one of the slits, the
resulting momentum transfer is

4 large enough to “push” the electron
AR SR — R out of the interference minima and
s maxima. The diffraction pattern is
destroyed.

Single slit
envelope




Uncertainty and the double slit

olf we try to pinpoint the electron at one of the slits, we
change its motion, and the interference pattern vanishes.

eCan you think of a way to get around this problem?



Uncertainty and the double slit

olf we try to pinpoint the electron at one of the slits, we
change its motion, and the interference pattern vanishes.

eCan you think of a way to get around this problem?
eWe could use lower energy photons...

e[t turns out, that just when the photon momentum gets
low enough that electron diffraction reappears, the photon
wavelength becomes larger than the separation between the
two slits (see Feynman Lectures on Physics, Vol. 3).

eThis means we can no longer tell which slit the electron
went through!



Why the Uncertainty Principle

elet's review what we have said so far about matter waves and
gquantum mechanics.

eElementary particles have associated matter waves y(x,t). The
intensity of the wave, I(x)=[{(x,t)|>, gives the probability of finding

ethe particle at position x at time t.

eHowever, QM places a firm constraint on the simultaneous
measurements we can make of a particle’s position and
momentum: ApxAx=h/2.

eThis last concept, the Uncertainty Principle, probably seems
very mysterious. However, it turns out that it is just a natural
consequence of the wave nature of matter, for all waves obey
an Uncertainty Principle!

elet's take a look...



Probabilities and waves, again

eConsider a particle with de Broglie wavelength A.
eDefining the wave number k = 21t/A and the angular frequency

ew= 21y, the wave function for such a particle could be
(conveniently) written:

w(x, )= Asin( kx— wl)

olf the wavelength has a definite value A there is no uncertainty AA,
and hence p=h/A is also definite.

eSuch a wave is a sinusoid that extends over all values of x with
constant amplitude.

olf this is the case, then the probability of finding the particle
should be equally likely for any x; in other words, the location of
the particle is totally unknown. Of course, this should happen,
according to the Uncertainty Principle.



Wave functions should be finite

oIf a wavefunction is infinite in extent, like y =Asin2mt(x/A-vt), the
probability interpretation suggests that the particle could be
anywhere: Ax=eo,

oIf we want particles to be localized to some smaller Ax, we need
one whose amplitude varies with x and t, so that it vanishes for most
values of x. But how do we create a function like this?

Particle could be anywhere! Particle localized here!

4

Left: a wave function with constant amplitude means that its corresponding particle is equally likely to be at any value of X
Right: a finite wave function, or “wave packet,” corresponds to a localized particle with AX#co.




Building wave packets

eln order to get |ocalized particles, their corresponding wave
functions need to go to zero as x—z+oco. Such a wave function
is called a wave packet.

e[t turns out to be rather easy to generate wave packets: all we
have to do is superimpose, or add up, several sinusoids of
different wavelengths or frequencies.

eRecall the Principle of Superposition: any wave s can be
built up by adding two or more other waves.

olf we pick the right combination of sinusoids, they will cancel
at every x other than some finite interval (Fourier Theorem).



Superposition example: beats

eYou may already know that adding two sine waves of slightly
different wavelengths causes the phenomenon of beats (see

below).

oA typical example: using a tuning fork to tune a piano string.
If you hear beats when you strike the string and the tuning fork
simultaneously, you know that the string is slightly out of tune.

The sum of two sine waves of slightly
different wavelengths results in beats.
The beat frequency is related to the
difference between the wavelengths.
This is a demonstration of how adding
two sinusoids creates a wave of varying
amplitude.
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Superimposing more sinusoids

eNow, let's sum seven sinusoidal waves of the form:
15%27
=2 W k=2 pograrn P cOS(KX)

where k=21/A and Ao= A15=1/4, A1o= A14=1/3, A11= A13=1/2,
and An2=1.

We get a function that is starting to look like a wave packet;
however, as you can see, it's still periodic, although in a more

complicated way than usual: |n
Summing up sinusoids to get another

periodic function. This is an example AL\ A ,l \ A\ A A AN\ A A
of Fourier's Theorem: any periodic e V vV V Yyt U LAY
function may be generated by “ A

summing up sines and cosines.




The continuum limit

eS0, evaluating a sum of sinusoids like:

Y => A cos(kx)
where k is an integer that runs between k1 and ko, we can reproduce

any periodic function.

olf we let k run over all values between k1 and k2 — that is, we make it
a continuous variable —then we can finally reproduce a finite wave packet.

By summing over all values of k in an interval dk= k;-k,
we are essentially evaluating the integral m
w =" dk Akycos(kX
In such a “continuous sum”, the component sinusoids are i /\ IaN
all in phase near x=0. Away from this point, in either \/ V -
direction, the components begin to get out of phase with -
each other. If we go far enough out, the phases of the n
infinite number of components become totally random, U B nay. (P,
and cancel out phases of component sinusoids completely. U sinusoids completely
cancel out here.



Connection to uncertainty

@S0, we can sum up sinusoids to get wave packets.
e\What does this actually mean?

elntuition: we want a wave function that is non-zero only
over some finite interval Ax.

eTo build such a function, we start adding sinusoids whose
inverse wavelengths, k=21t/A, take on values in some finite
interval Ak.

eHere's the point: as we make the interval Ak bigger, the
width of the wave packet Ax gets smaller. This sounds like
the Uncertainty Principle!



Wave-related uncertainties

eAs we sum over sinusoids, making the range of k values
Ak larger, we decrease the width of the resulting function.

eln fact, there is a fundamental limit here that looks just like
the position-momentum uncertainty relation.

eFor any wave, the minimum width Ax of a wave packet
composed from sinusoids with range Ak is Ax=1/(2Ak), or:

AXANK=>1/2

eThere is a similar relation between time and frequency:

AAw=1/2



Connection to QM

olf k=21/A, and A=h/p, then the uncertainty relation for waves
in general tells us:

AXANK>1/2
AT = AP
AA h

AXAD > h/ An=Hh/2

e\We recover the Heisenberg uncertainty relation!

eBy a similar argument, we can show that the frequency-time
uncertainty relation for waves implies the energy-time uncertainty
of quantum mechanics.

eThe Uncertainty Principle arises as a consequence of the wave
nature of particles!



Applications to Particle Physics

oA particle can be described as a superposition of other
particles (e.g. neutrino oscillations).

eSince trajectories are not well defined, we need to consider
all processes (Feynman diagrams) consistent with the observed
result. The amplitudes of these processes can interfere,
enhancing or suppressing the total probability.

eThe production of new particles from collis ions or decays

eof other particles is subject to the probabilistic nature of
Quantum Mechanics. We call this probabilities branching
ratios.

eSchrodinger's equation is valid for non-relativistic particles.
In Particle Physics we use the Dirac equation for spin = %2
particles and the Klein-Gordon equation for spin = 0 particles.



Applications to Particle Physics

oA particle can be described as a superposition of other
particles (e.g. neutrino oscillations).

Q=\)+ +
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Applications to Particle Physics

eSince trajectories are not well
defined, we need to consider

all processes (Feynman diagrams)
consistent with the observed
result. The amplitudes of these

(a)
processes can interfere,
enhancing or suppressing
the total probability. ®) © @
AVAPA

o time, f
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Applications to Particle Physics

eThe production of new particles from collisions or decays of
other particles is subject to the probabilistic nature of Quantum
Mechanics. We call this probabilities branching ratios.

—
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Applications to Particle Physics

eSchrédinger's equation is valid for non-relativistic particles.
In Particle Physics we use the Dirac equation for spin = Y2
particles and the Klein-Gordon equation for spin = 0 particles.

Dirac equation

ihy" 8,9 — meyp =0

where there is an implied summation over the values of the twicerepeated indexu =0, 1, 2, 3, and FJ“ is the 4-gradient. In practice one often writes the gamma
matrices interms of 2 =% 2 sub-matrices taken from the Pauli matrices and the 2 x 2 identity matrix, Explicitly the standard representation is

L. 0 0 o, 0 o 0 o
”= = 1= o 2= o 3= 2 .
L (ﬂ —fz)"r (—al- 0>” (—aﬂ n)"r (—oz ﬂ)

Klein-Gordon equation:
1. & m?c?
—— - Vi +
2 gt2 h?




Summary

eQuantum mechanics is the physics of small objects.
elts typical energy scale is given by Planck’s constant.

eln QM, variables like position, momentum, energy, etc.
tend to take on discrete values (often proportional to h).

eMatter and radiation can have both particle and wavelike
properties, depending on the type of observation.

eBut by the Uncertainty Principle, objects can never be
ewavelike or particle-like simultaneously.

eMoreover, it is the act of observation that determines
whether matter behaves like a wave or a particle.



Perturbation theory

eUse a power series in a parameter ¢ (such that e << 1) -
known as perturbation series - as an approximation to the
full solution.

eFor example:

A =A0—|-6A1 +€2A2 + ...

eln this example, Ao is the “leading order” solution, while
A1, Az, ... represent higher order terms.

eNote: if € is small, the higher-order terms in the series
become successively smaller.

eApproximation:

A%AO-I—EA:[



Perturbation theory in QFT

order O:

A

ePerturbation theory allows for
well-defined predictions in

quantum field theories (as long order 2: B
as they obey certain requirements).

eQuantum Electrodynamics (QED) order 4:

is one of those theories. ‘ o o
eFeynman diagrams correspond

to the terms in the perturbation D
series!

P = A+B£I2+(C+D)g4+...

Diagrams define a series in «



Quantum Chromodynamics (QCD) 4.

meson baryon

eTheory of strong interactions. Recall: gluons are the force carriers.

eConfinement: why we don’t see free quarks.
eAsymptotic freedom: at very high energies, the interaction
scale is smaller than at low energies, and we're in the

eperturbative regime.
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