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Course policies
● Classes from 10:00 AM to 12:30 PM (10 min break at ~ 11:10 AM).

● Attendance record counts.

–Up to four absences

–Lateness or leaving early counts as half-absence

–Send email notifications of all absences to shpattendance@columbia.edu.

● Please, no cell phones during class

● Please, ask questions!

● Lecture materials + Research Opportunities + Resources to become a 
particle physicist

● https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram
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Schedule
Month Day Lecture Teacher

September 22 Introduction Yeon-jae

29 History of Particle Physics Yeon-jae

October 6 Special Relativity Edward

13 Quantum Mechanics Edward

20 Experimental Methods Edward

27 The Standard Model - Overview Yeon-jae

November 3 The Standard Model - Limitations Yeon-jae

10 Neutrino Theory Edward

17 Neutrino Experiment Edward

24 No classes, SHP break

December 1 LHC and Experiments Yeon-jae

8 The Higgs Boson and Beyond Yeon-jae

15 Particle Cosmology Edward



Announcements

• The Admissions Office of Columbia College and the School 
of Engineering will be conducting special information 
sessions and campus tours for SHP students and their 
parents:

• Saturday, October 27, 2018 at 12:45 pm
One house Information session in room 301 Pupin followed by 
an optional campus tour.

• Saturday, November 17, 2018 at 12:45 pm
One house Information session in room 301 Pupin followed by 
an optional campus tour.

• No RSVP necessary – All Welcome.



 Quantum phenomena:
-Quantization: how Nature comes in discrete packets
-Particle-wave duality.
-Understanding quantum phenomena in terms of waves.
-The Schrödinger Equation

 Interpreting quantum mechanics (QM):
-The probabilistic interpretation of quantum mechanics
-The Uncertainty Principle and the limits of observation. 

 Understanding the Uncertainty Principle:
-Building up wave packets from sinusoids.
-Why the Uncertainty Principle is a natural property of waves.

Topics for Today



What is Quantum Mechanics?

 QM is the study of physics at very small scales -
specifically, when the energies and momenta of a system are 
of the order of Planck’s constant:

ħ = h/2π 6.6×10-16eV.s

 On the quantum level, “particles" exhibit a number of non-
classical behaviors:

1. Discretization (quantization) of energy, momentum charge, spin, etc. 
Most quantities are multiples of e and/or h.

2. Particles can exhibit wavelike effects: interference, diffraction, …

3. Systems can exist in a superposition of states.



Quantization of Electric Charge

 Recall:
 J.J. Thomson (1897): electric 
charge is corpuscular, “stored” in 
electrons.
 R. Milikan (1910): electric 
charge is quantized, always 
showing up in integral multiples 
of e.
 Milikan’s experiment:
measuring the charge on ionized 
oil droplets. R.A. Millikan

Nobelprize.org



The Oil Drop Experiment

 The experiment entailed 
balancing the downward 
gravitational force with the 
upward buoyant and electric 
forces on tiny charged droplets 
of oil suspended between two 
metal electrodes.
 Since the density of the oil was 
known, the droplets’ masses could 
be determined from their observed 
radii.
 Using a known electric field, 
Milikan and Fletcher could 
determine the charge on oil 
droplets in mechanical equilibrium.



The Oil Drop Experiment

 By repeating the experiment 
for many droplets, they 
confirmed that the charges were 
all multiples of some 
fundamental value.

 They calculated it to be 
1.5924(17)x10-19 C, within 1% of 
the currently accepted value of 
1.602176487(40)x10-19 C.

 They proposed that this was 
the charge of a single electron.



Quantization of energy

 Recall:
 M. Planck (1900): blackbody radiation 
spectrum can be explained if light of 
frequency ν comes in quantized energy 
packets, with energies of hν.
A. Einstein (1905): Photoelectric effect can only be theoretically 
understood if light is corpuscular.
N. Bohr (1913): discrete energy spectrum of the hydrogen atom can 
be explained is the electron’s angular momentum about the nucleus is 
quantized. 

In an atom, angular momentum mvr always comes in integral 
multiples of ħ = h/2π.
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Quantization of Spin

 The particle property called spin, is also 
quantized in units of ħ.
All particles have spin: it is an inherent property, 
like electric charge, or mass.
A magnetic phenomenon, spin is very important.
If you understand bar magnets, you (somewhat) 
understand spin.
Spin is closely related to Pauli’s Exclusion 
Principle (Spin Statistic Theorem), which relates 
the change in sign of the QM wavefunction when 
two identical particles are exchanged in a system 
(more on this later…).



How does spin enter the picture?

 How do particles get a magnetic moment?
Enter spin.  Imagine an electron as a rotating 
ball of radius R, with its charge distributed 
over the volume of the sphere.
The spinning sets up a current loop around 
the rotation axis, creating a small magnetic 
dipole: like a bar magnet!
The spinning ball gets a dipole moment:

Spin S is a vector that points along the axis 
of rotation (by the “right-hand rule”). The 
moment μ points in the opposite direction.



Spin-magnetism analogy

 To some extent, all elementary particles behave like tiny bar 
magnets, as if they had little N and S magnetic poles.

Two bar magnets set side by side will
try to anti-align such that the north and
south poles ‘match up’. 

 Jargon: if a particle behaves this way in a magnetic field, it is said to 
have a non zero magnetic dipole moment μ. In a B field, such a particle 
will feel a force: 

Similarly, an object with a magnetic moment 
will try to anti-align itself with a magnetic field.



Quantization of Spin

 If an electron is a spinning ball of charge, we 
understand how its magnetic moment arises.
This is still classical physics: the spin axis may 
point in any direction. But, Nature is very 
different!
O. Stern and W. Gerlach (1921):
While measuring Ag atom spins in a B field, they 
found that spin always aligns in two opposite 
directions, “up" and “down”, relative to the field.
Moreover, the magnitude of the spin vector is 
quantized in units of ħ.
All elementary particles behave this way: their 
spins are always quantized, and when measured 
only point in certain directions (“space 
quantization”).



Stern & Gerlach experiment

 https://www.youtube.com/watch?v=rg4Fnag4V-E



Stern & Gerlach experiment

O. Stern and W. Gerlach (1921):



Understanding Spin

 If elementary particles like the electron are actually little spinning 
spheres of charge, why should their spins be quantized in magnitude 
and direction?
Classically, there is no way to explain this behavior.
In 1925, S. Goudsmidt and G. Uhlenbeck realized that the classical 
model just cannot apply: electrons do not spin like tops; magnetic 
behavior must be explained some other way.
Modern view: spin is an intrinsic property of all elementary particles, 
like charge or mass.
It is a completely quantum phenomenon, with no classical analog.

Like most other quantum mechanical 
properties, allowed spin values are restricted 

to certain numbers proportional to ħ.
The classically expected continuum of values 
is not observed.



Quantization Summarized

General rule in QM:
Measurable quantities tend to come in integral (or half-integral) 
multiples of fundamental constants.

Almost all of the time, Planck’s constant is involved in the 
quantized result. It’s truly a universal, fundamental constant of 
Nature.
Question: why don't we observe quantization at macroscopic 
scales?



Quantization Summarized

General rule in QM:
Measurable quantities tend to come in integral (or half-integral) 
multiples of fundamental constants.

Almost all of the time, Planck’s constant is involved in the 
quantized result. It’s truly a universal, fundamental constant of 
Nature.
Question: why don't we observe quantization at macroscopic 
scales?
Answer: due to the smallness of Planck's constant.
This is analogous to Special Relativity, where the small size of the 
ratio v/c at everyday energy scales prevents us from observing the 
consequences of SR in the everyday world.



More Quantum weirdness

Observation tells us that physical quantities are not continuous 
down to the smallest scales, but tend to be discrete.
But QM has another surprise: if you look small enough, matter -
that is, “particles” - start to exhibit wavelike behavior.
We have already seen hints of this idea.
Light can behave like a wave, and it can behave like a particle, 
depending on the circumstances…
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More Quantum weirdness

L. de Broglie (1924) suggested that the wave-particle behavior 
of light might apply equally well to matter.
Just as a photon is associated with a light wave, so an electron 
could be associated with a matter wave that governs its motion.



The de Broglie hypothesis

de Broglie’s suggestion was a very bold statement 
about the symmetry of Nature.
Proposal: the wave aspects of matter are related to its 
particle aspects in quantitatively the same way that the 
wave and particle aspects of light are related.
Hypothesis: for matter and radiation, the total energy E 
of a particle is related to the frequency ν of the wave 
associated with its motion by:

E = h

If E=pc (recall SR), then the momentum p of the 
particle is related to the wavelength λ of the associated 
wave by the equation:

p = h/λ

L. de Broglie
Nobelprize.org



The de Broglie hypothesis

p = h/λ or λ=h/p → de Broglie relation

It holds even for massive particles.
It predicts the de Broglie wavelength of a matter wave 
associated with a material particle of momentum p.

L. de Broglie
Nobelprize.org

de Broglie hypothesis: particles are 
also associated with waves, which 
are extended disturbances in space 
and time.

group velocity



Matter waves and the classical limit

Question: if the de Broglie hypothesis is correct, why don’t 
macroscopic bodies exhibit wavelike behaviors?



Matter waves and the classical limit

Question: if the de Broglie hypothesis is correct, why don’t 
macroscopic bodies exhibit wavelike behaviors?
Smallness of h!

What is your de Broglie wavelength?
What is the de Broglie wavelength of a 
100 eV/c electron?
h = 6.62606957(29) ×10-34 J s
h = 4.13566733(10) × 10-15 eV s

Try yourself:



Testing the wave nature of matter

Macroscopic particles do not have measurable de Broglie 
wavelengths, but electron wavelengths are about the 
characteristic size of X-rays.
So, we have an easy test of the de Broglie hypothesis:
Check if electrons exhibit wavelike behavior (diffraction, 
interference, …) under the same circumstances that X-rays do.
First, let’s talk a little bit about X-rays and X-ray diffraction.



X-rays

W. Röntgen (1895): discovers X-rays, high energy photons 
with typical wavelengths near 0.1 nm.
Compared to visible light (λ between 400 and 750 nm), X-rays 
have extremely short wavelengths and high penetrating power.
Early in the 20th century, physicists proved that X-rays are light 
waves by observing X-ray diffraction from crystals.

The first medical röntgengram:
a hand with buckshot, 1896.



X-ray crystallography

How it’s done: take X-rays and shoot 
them onto a crystal specimen.
Some of the X-rays will scatter 
backwards off the crystal.
When film is exposed to the 
backscattered X-rays, geometric 
patterns emerge.
In this image, the dark spots 
correspond to regions of high intensity 
(more scattered X-rays).
The geometry of the pattern is 
characteristic of the structure of the 
crystal specimen.
Different crystals will create different 
scattering patterns.

Negative image of an X-ray diffraction 
pattern from a beryllium aluminum 
silicate crystal.  The X-rays seem to 
scatter only in preferred directions



X-ray diffraction

What is the process behind X-ray 
crystallography?
Why do X-rays appear to scatter 
off crystals in only certain 
directions?
This behavior can only be 
understood if X-rays are waves.
The idea: think of the crystal as a 
set of semi-reflective planes.
The X-rays reflect from different 
planes in the crystal, and then 
constructively and destructively 
interfere at the film screen.



Basic wave concepts

To understand waves in QM, 
let’s review some basic wave 
concepts.
Wavelength λ: the repeat 
distance of a wave in space.
Period T: the “repeat distance” 
of a wave in time.
Frequency ν: the inverse of the 
period; ν = 1/T.
Amplitude A: the wave’s 
maximum displacement from 
equilibrium.
Classically, this determines a 
wave’s intensity.

Wavelength is easy to visualize; 
it is the distance over which the 
wave starts to repeat.

For an object executing periodic 
motion, like a mass on a spring, 
the period is just the time interval 
over which the wave starts to repeat.



Basic concept: interference

Principle of Superposition: you can add up any number of 
waves (sinusoids) to get another wave.
The resultant wave may be larger or smaller than its components, 
depending on their relative phase angles.
Phases can be understood in terms of motion on the unit circle.
Hence, waves interfere, canceling each other at certain locations.
Interference is what gives rise to the light and dark spots in the 
X-ray diffraction pattern.

Waves can add or cancel, 
depending on their relative phase.  
You can visualize phase by 
imagining uniform circular motion 
on a unit circle.



How X-ray interference works

Consider two X-ray beams 
reflecting from two crystal planes a 
distance d >> 0.1nm apart.
The wave reflecting from the lower 
plane travels a distance 2l farther 
than the upper wave.
If an integral number of 
wavelengths nλ just fits into the 
distance 2l, the two beams will be in 
phase and will constructively 
interfere.
Only certain incident angles lead to 
constructive interference:



Electron diffraction

Scattering electrons off crystals 
also creates a diffraction pattern!
Electron diffraction is only 
possible if electrons are waves.
Hence, electrons (matter 
particles) can also behave 
as waves.

Diffraction pattern created by 
scattering electrons off a crystal.  
(This is a negative image, so the 
dark spots are actually regions of 
constructive interference.) Electron 
diffraction is only possible if 
electrons are waves.



Observation of electron diffraction

Electron diffraction was first observed in a famous 1927 
experiment by Davisson and Germer.
They fired 54 eV electrons at a nickel target and observed 
diffraction peaks consistent with de Broglie’s hypothesis.



Electron diffraction demo

https://www.youtube.com/watch?v=IYnU4T3jbgA



Understanding matter waves

Let’s think a little more about de Broglie waves. 
In classical physics, energy is transported either by waves or 
by particles.

Particle: a definite, localized bundle of energy and 
momentum, like a bullet that transfers energy from gun 
to target.
Wave: a periodic disturbance spread over space and time, 
like water waves carrying energy on the surface of the ocean.

In quantum mechanics, the same entity can be described by 
both a wave and a particle model:

Electrons scatter like localized particles, but they can also 
diffract like extended waves.



The wave function

Particles ↔ waves.
How do we represent wave-particles mathematically? 
Classically: a particle can be represented solely by its position x 
and momentum p. If it is acted on by an external force, we can find 
x and p at any time by solving a differential equation like:

A wave is an extended object, so we can’t represent it by the pair 
of numbers (x,p).
Instead, for a wave moving at velocity c=λν, we define a “wave 
function” ψ(x,t) that describes the wave’s extended motion in time 
and space.
To find ψ(x,t) at any position and time, we solve a differential 
equation like:

Something similar
applies to particles…



Wave equation for quantum waves

Time evolution of waves can usually be found by solving a 
wave equation like:

E. Schrödinger (1926) found that quantum particles moving 
in a 1D potential V(x) obey the partial differential equation:

✓This expression involves ħ, the usual QM parameter.

✓It also involves the number i, which means that the waves ψ(x,t) 
are complex.



The de Broglie wave

Particles can be described by de Broglie waves of wavelength 
λ=h/p.
For a particle moving in the x direction with momentum p=h/λ 
and energy E=hν, the wave function can be written as a simple 
sinusoid of amplitude A:

The propagation velocity c of this wave is:



Quantum waves summarized

An elementary particle like a photon can act like a particle 
(Compton effect, photoelectric effect) or a wave (diffraction), 
depending on the type of experiment / observation.
If it’s acting like a particle, the photon can be described by its 
position and momentum x and p. If it’s acting like a wave, we 
must describe the photon with a wave function ψ(x,t).
Two waves can always superpose to form a third: ψ = ψ1 + ψ2.
This is what gives rise to interference effects like diffraction.
The wave function for a moving particle (a traveling wave) has 
a simple sinusoidal form.
But how do we interpret ψ(x,t) physically?



Interpretation of the wave function

We have seen that any wave can be described by a wave 
function ψ(x,t).
For any wave, we define the wave’s intensity I to be:

where the asterisk signifies complex conjugation. Note that 
for a plane wave this is the square of A (a constant):

Let’s use the concept of intensity and a simple thought 
experiment to get some intuition about the physical meaning 
of the de Broglie wave function.



The double slit experiment

Experiment: a device sprays an electron beam at a wall with two 
small holes in it. The size of the holes is close to the electrons’ 
wavelength λdB.

Behind the wall is a screen with 
an electron detector.
As electrons reach the screen, 
the detector counts up how many 
electrons strike each point on the 
wall.
Using the data, we plot the 
intensity I(x): the number of 
electrons arriving per second 
at position x.



The double slit experiment

https://www.youtube.com/watch?v=qCmtegdqOOA 



The double slit experiment

The classical result: 

If electrons are classical particles, we expect the intensity in front 
of each slit to look like a bell curve, peaked directly in front of each 
slit opening.
When both slits are open, the total intensity I1+2 on the screen 
should just be the sum of the intensities I1 and I2 when only one 
or the other slit is open.



The double slit experiment

In practice:

When we perform the real experiment, a strange thing happens.
When only one slit is open, we get the expected intensity distributions.
But when both slits are open, a wavelike diffraction pattern appears.
Apparently, the electrons are acting like waves in this experiment.



Wave function interpretation

In terms of waves, the wave function of an electron at the screen when 
only slit 1 is open is ψ1, and when only slit 2 is open it’s ψ2.
Hence, the intensity when only one slit is open is either I1=|ψ1|2 or 
I2=|ψ2|2. 
With both slits open, the intensity at the screen is I1+2=|ψ1+ψ2|2, not 
just I1+I2!  
When we add the wave functions, we get constructive and destructive 
interference; this is what creates the diffraction pattern.



Wave function and probability

If electrons create a diffraction pattern, they must 
be waves. But when they hit the screen, they are 
detected as particles.
How do we interpret this?
M. Born: Intensity I(x)=|ψ(x,t)|2 actually refers 
to probability a given electron hits the screen 
at position x.
In QM, we don’t specify the exact location of 
an electron at a given time, but instead state 
by I(x)=|ψ(x,t)|2 the probability of finding a particle 
at a certain location at a given time.

Diffraction pattern from an actual 
electron double slit experiment.  
Notice how the interference pattern 
builds particle by particle.

The probabilistic interpretation gives 
physical meaning to ψ(x,t): it is the 
“probability amplitude” of finding a 
particle at x at time t.



Is there a contradiction?

We now understand the wave function in terms of the probability 
of a particle being someplace at some time.
However, there is another problem to think about.
Since the electrons diffract, they show wavelike behavior; but when 
they hit the screen, they interact like particles. And if they are particles, 
then shouldn't they only go through one slit at a time?
If this is the case, how can an electron’s wave undergo double slit 
interference when the electron only goes through one slit?
Seems impossible…



Is there a contradiction?

We now understand the wave function in terms of the probability 
of a particle being someplace at some time.
However, there is another problem to think about.
Since the electrons diffract, they show wavelike behavior; but when 
they hit the screen, they interact like particles. And if they are particles, 
then shouldn't they only go through one slit at a time?
If this is the case, how can an electron’s wave undergo double slit 
interference when the electron only goes through one slit?
Seems impossible…
To test what’s going on, suppose we slow down the electron gun 
so that only one electron at a time hits the wall.
We then insert a device over each slit that tells us if the electron 
definitely went through one slit or the other.



Destroying the interference pattern

We add electron detectors that shine light across each slit.
When an electron passes through one of the slits, it breaks the beam, 
allowing us to see whether it traveled through slit 1 or slit 2 on its way 
to the backstop.
Result: if we try to detect the electrons at one of the two slits in this 
way, the interference pattern is destroyed! In fact, the pattern now 
looks like the one expected for classical particles.



Complementarity

Why did the interference pattern disappear? 
Apparently, when we used the light beam to localize the 
electron at one slit, we destroyed something in the wave 
function ψ(x,t), that contributes to interference.
Principle of Complementarity (N. Bohr): if a measurement 
proves the wave character of radiation or matter, it is impossible 
to prove the particle character in the same measurement, and 
vice-versa.
The link between the wave and particle models is provided by 
the probability interpretation of ψ(x,t), in which an entity’s wave 
gives the probability of finding its particle at some position.



Schrodinger’s cat



The Uncertainty Principle

There seems to be some fundamental constraint on QM 
that prevents matter from acting wave-like and particle-like 
simultaneously.
Moreover, it appears that our measurements can directly 
affect whether we observe particle or wavelike behavior.
These effects are encapsulated in the Uncertainty Principle.

Heisenberg: quantum observations are fundamentally 
limited in accuracy.



The Uncertainty Principle (1)

According to classical physics, we can (at the same instant) 
measure the position x and momentum px of a particle to 
infinite accuracy if we like. We’re only limited by our equipment.
However, Heisenberg’s uncertainty principle states that 
experiment cannot simultaneously determine the exact values 
of x and px.
Quantitatively, the principle states that if we know a particle’s 
momentum px to an accuracy Δpx, and its position x to within 
some Δx, the precision of our measurement is inherently limited 
such that:



Using the Uncertainty Principle

Does the Uncertainty Principle (UP) mean that we can’t measure 
position or momentum to arbitrary accuracy?
No. The restriction is not on the accuracy to which x and px can be 
measured, but rather on the product ΔpxΔx in a simultaneous
measurement of both.
The UP implies that the more accurately we know one variable, 
the less we know the other. If we could measure a particle’s px to 
infinite precision, so that Δpx=0, then the uncertainty principle 
states:

In other words, after our measurement of the particle’s direction 
(momentum), we lose all information about its position!



The Uncertainty Principle (2)

The Uncertainty Principle has a second 
part related to measurements of energy 
E and the time t needed for the 
measurements. It states that:

Example: estimate the mass of virtual particles 
confined to the nucleus (see Lecture 2 on 
estimating Yukawa’s meson mass).
Example: Δt could be the time during which 
a photon of energy spread ΔE is emitted from 
an atom.

This effect causes spectral lines in excited 
atoms to have a finite uncertainty Δλ
(“natural width”) in their wavelengths.

Atomic spectral lines, the result 
of transitions that take a finite 
time, are not thin “delta function” 
spikes, but actually have a natural 
width due to the Uncertainty 
Principle.



Uncertainty and the double slit

Now that we know the UP, we can understand 
why we can’t “beat" the double slit experiment 
and simultaneously observe wave and particle 
behavior.
Basically, our electron detector Compton 
scatters light off of incoming electrons.
When an electron uses one of the slits, we 
observe the scattered photon and know that 
an electron went through that slit.
Unfortunately, when this happens, the photon 
transfers some of its momentum to the electron, 
changing its momentum. Detection photon Compton 

scatters off an incoming 
electron, transferring its 
momentum.



If we want to know the slit used, the photon’s wavelength must 
be smaller than the spacing between the two slits.
Hence, the photon has to have a large momentum (remember, 
λ=h/p).
As a result, a lot of momentum gets transferred to the electron 
- enough to effectively destroy the diffraction pattern.

Uncertainty and the double slit

If the wavelength of the scattering 
photon is small enough to pinpoint 
the electron at one of the slits, the 
resulting momentum transfer is 
large enough to “push” the electron 
out of the interference minima and 
maxima.  The diffraction pattern is 
destroyed.



If we try to pinpoint the electron at one of the slits, we 
change its motion, and the interference pattern vanishes.
Can you think of a way to get around this problem?

Uncertainty and the double slit



If we try to pinpoint the electron at one of the slits, we 
change its motion, and the interference pattern vanishes.
Can you think of a way to get around this problem?
We could use lower energy photons…
It turns out, that just when the photon momentum gets 
low enough that electron diffraction reappears, the photon 
wavelength becomes larger than the separation between the 
two slits (see Feynman Lectures on Physics, Vol. 3).
This means we can no longer tell which slit the electron 
went through!

Uncertainty and the double slit



Why the Uncertainty Principle

Let’s review what we have said so far about matter waves and 
quantum mechanics.
Elementary particles have associated matter waves ψ(x,t). The 
intensity of the wave, I(x)=|ψ(x,t)|2, gives the probability of finding 
the particle at position x at time t.
However, QM places a firm constraint on the simultaneous 
measurements we can make of a particle’s position and 
momentum: ΔpxΔx≥ħ/2.
This last concept, the Uncertainty Principle, probably seems 
very mysterious. However, it turns out that it is just a natural 
consequence of the wave nature of matter, for all waves obey 
an Uncertainty Principle!
Let’s take a look…



Probabilities and waves, again

Consider a particle with de Broglie wavelength λ.
Defining the wave number k = 2π/λ and the angular frequency
ω= 2πν, the wave function for such a particle could be 
(conveniently) written:

If the wavelength has a definite value λ there is no uncertainty Δλ, 
and hence p=h/λ is also definite.
Such a wave is a sinusoid that extends over all values of x with 
constant amplitude.
If this is the case, then the probability of finding the particle 
should be equally likely for any x; in other words, the location of 
the particle is totally unknown. Of course, this should happen, 
according to the Uncertainty Principle.



Wave functions should be finite

If a wavefunction is infinite in extent, like ψ =Asin2π(x/λ-νt), the 
probability interpretation suggests that the particle could be 
anywhere: Δx=∞.
If we want particles to be localized to some smaller Δx, we need 
one whose amplitude varies with x and t, so that it vanishes for most 
values of x.  But how do we create a function like this?



Building wave packets

In order to get localized particles, their corresponding wave 
functions need to go to zero as x→±∞.  Such a wave function 
is called a wave packet.
It turns out to be rather easy to generate wave packets: all we 
have to do is superimpose, or add up, several sinusoids of 
different wavelengths or frequencies.
Recall the Principle of Superposition: any wave ψ can be 
built up by adding two or more other waves.
If we pick the right combination of sinusoids, they will cancel 
at every x other than some finite interval (Fourier Theorem).



Superposition example: beats

You may already know that adding two sine waves of slightly 
different wavelengths causes the phenomenon of beats (see 
below).
A typical example: using a tuning fork to tune a piano string.  
If you hear beats when you strike the string and the tuning fork 
simultaneously, you know that the string is slightly out of tune.

The sum of two sine waves of slightly 
different wavelengths results in beats.  
The beat frequency is related to the 
difference between the wavelengths. 
This is a demonstration of how adding 
two sinusoids creates a wave of varying 
amplitude.



Superimposing more sinusoids

Now, let’s sum seven sinusoidal waves of the form:

where k=2π/λ and A9= A15=1/4, A10= A14=1/3, A11= A13=1/2, 
and A12=1.

We get a function that is starting to look like a wave packet; 
however, as you can see, it’s still periodic, although in a more 
complicated way than usual:

Summing up sinusoids to get another 
periodic function.  This is an example 
of Fourier’s Theorem: any periodic 
function may be generated by 
summing up sines and cosines.



The continuum limit

So, evaluating a sum of sinusoids like:

where k is an integer that runs between k1 and k2, we can reproduce 
any periodic function.
If we let k run over all values between k1 and k2 – that is, we make it 
a continuous variable –then we can finally reproduce a finite wave packet.

By summing over all values of k in an interval dk= k1-k2, 
we are essentially evaluating the integral

In such a “continuous sum”, the component sinusoids are 
all in phase near x=0.  Away from this point, in either 
direction, the components begin to get out of phase with 
each other.  If we go far enough out, the phases of the 
infinite number of components become totally random, 
and cancel out phases of component sinusoids completely.



Connection to uncertainty

So, we can sum up sinusoids to get wave packets.
What does this actually mean?

Intuition: we want a wave function that is non-zero only 
over some finite interval Δx.
To build such a function, we start adding sinusoids whose 
inverse wavelengths, k=2π/λ, take on values in some finite 
interval Δk.
Here’s the point: as we make the interval Δk bigger, the 
width of the wave packet Δx gets smaller. This sounds like 
the Uncertainty Principle!



Wave-related uncertainties

As we sum over sinusoids, making the range of k values 
Δk larger, we decrease the width of the resulting function.
In fact, there is a fundamental limit here that looks just like 
the position-momentum uncertainty relation.
For any wave, the minimum width Δx of a wave packet 
composed from sinusoids with range Δk is Δx=1/(2Δk), or:

There is a similar relation between time and frequency:



Connection to QM

If k=2π/λ, and λ=h/p, then the uncertainty relation for waves 
in general tells us:

We recover the Heisenberg uncertainty relation!
By a similar argument, we can show that the frequency-time 
uncertainty relation for waves implies the energy-time uncertainty 
of quantum mechanics.
The Uncertainty Principle arises as a consequence of the wave 
nature of particles!



Applications to Particle Physics

A particle can be described as a superposition of other 
particles (e.g. neutrino oscillations).
Since trajectories are not well defined, we need to consider 
all processes (Feynman diagrams) consistent with the observed 
result. The amplitudes of these processes can interfere, 
enhancing or suppressing the total probability.
The production of new particles from collis ions or decays 
of other particles is subject to the probabilistic nature of 
Quantum Mechanics. We call this probabilities branching 
ratios.
Schrödinger's equation is valid for non-relativistic particles. 
In Particle Physics we use the Dirac equation for spin = ½ 
particles and the Klein-Gordon equation for spin = 0 particles.



Applications to Particle Physics

A particle can be described as a superposition  of other 
particles (e.g. neutrino oscillations).



Applications to Particle Physics

Since trajectories are not well 
defined, we need to consider 
all processes (Feynman diagrams) 
consistent with the observed 
result. The amplitudes of these 
processes can interfere, 
enhancing or suppressing 
the total probability.



Applications to Particle Physics

The production of new particles from collisions or decays of 
other particles is subject to the probabilistic nature of Quantum 
Mechanics. We call this probabilities branching ratios.



Applications to Particle Physics

Schrödinger's equation is valid for non-relativistic particles. 
In Particle Physics we use the Dirac equation for spin = ½ 
particles and the Klein-Gordon equation for spin = 0 particles.

Klein-Gordon equation:



Summary

Quantum mechanics is the physics of small objects.
Its typical energy scale is given by Planck’s constant.
In QM, variables like position, momentum, energy, etc. 
tend to take on discrete values (often proportional to h).
Matter and radiation can have both particle and wavelike 
properties, depending on the type of observation.
But by the Uncertainty Principle, objects can never be 
wavelike or particle-like simultaneously.
Moreover, it is the act of observation that determines 
whether matter behaves like a wave or a particle.



Use a power series in a parameter (such that << 1) –
known as perturbation series - as an approximation to the 
full solution.
For example:

In this example, A0 is the “leading order” solution, while 
A1, A2, … represent higher order terms.
Note: if is small, the higher-order terms in the series 
become successively smaller.
Approximation:

Perturbation theory



Perturbation theory in QFT

Perturbation theory allows for 
well-defined predictions in 
quantum field theories (as long 
as they obey certain requirements).
Quantum Electrodynamics (QED) 
is one of those theories.
Feynman diagrams correspond 
to the terms in the perturbation 
series!



Quantum Chromodynamics (QCD)

Theory of strong interactions. Recall: gluons are the force carriers.
Confinement: why we don’t see free quarks.
Asymptotic freedom: at very high energies, the interaction 
scale is smaller than at low energies, and we’re in the 
perturbative regime.


