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Course Policies

• Attendance:
• I will take attendance during class.
• Up to four excused absences (two with notes from parent/guardian)
• Send notifications of all absences to shpattendance@columbia.edu

• Valid excuses:
• Illness, family emergency, tests or athletic/academic competitions, 

mass transit breakdowns
• Invalid excuses: sleeping in, missing the train
• Please no cell phones.
• Ask questions :)
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Lecture Materials

• https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram
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Last week…
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Relativistic mechanics

What’s wrong with classical mechanics?
• We will see that classical mechanics is only valid in the limiting case 

where v→0, or v << c.
• This is generally the case for everyday observables.

• However, this is not the case with particles traveling close to the 

speed of light.
• In that case, classical mechanics fails to describe their behavior.
• To properly describe particle kinematics, and particle dynamics, 

we need relativistic mechanics.
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The notion of spacetime

• Time is local.
• Observers may not agree that two 

events occur at the same time.
• There is no absolute notion of all 

space at a moment in time.
• The speed of light is constant, and 

cannot be surpassed.
• Every event “exists” within a set of 

allowed trajectories (light cone).

Spacetime in Special Relativity
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Basic concepts

• Event: something that occurs at a 

specified point in space, at a specified 

time.
• Observer: someone who witnesses 

and can describe events (also known 

as a “frame of reference”)
• An observer describes events by 

using “standard” clocks and 
rulers which are at rest with 

respect to him/her.
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Postulates of special relativity

• In 1905, A. Einstein published two papers on special relativity, as well 

as a paper on the photoelectric effect (Nobel Prize 1921) and 

Brownian motion (the physics of particles suspended in a fluid).

• All of Einstein’s conclusions in special relativity were based on only 

two simple postulates:

1. The laws of physics are the same in all inertial reference frames (old 

idea, dates to Galileo).

2. All inertial observers measure the same speed c for light in a 

vacuum, independent of the motion of the light source.
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Postulates of special relativity

• The constancy of the speed of light is 

counter-intuitive, because this is not 

how “ordinary” objects behave.
• Example: imagine observing an 

oncoming car that moves at speed c.
• We expect a moving observer to 

measure a different value for c than a 

stationary one.
• According to SR, however, we always 

measure c for light, regardless of our 

motion!
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Implications of the postulates

• Einstein developed a series of “thought experiments” that illustrate 

the interesting consequences of the universality of c. These can be 

summarized as:

1. The illusion of simultaneity

2. Time dilation

3. Lorentz (length) contraction

4. Velocity addition (not really a thought experiment)

As we go through Einstein’s examples, keep in mind that 
these results may seem a little counterintuitive.
You have to get rid of your Newtonian way of thinking!
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• An observer O calls two events simultaneous if they occur at the 

same time in his / her coordinates.
• Interestingly, if the two events do not occur at the same position in 

frame O, then they will not appear simultaneous to a moving 

observer O’.
• In other words, events that are simultaneous in one inertial system 

are not necessarily simultaneous in others.
• Simultaneity is not an absolute concept, but one that 

depends on the state of motion of the observer.
• Again, this follows from the fact that c is the same in all inertial 

frames…

(The relativity of) Simultaneity 
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• A demonstration: Einstein’s thought experiment.

"A boxcar moves with uniform velocity and two lightning bolts strike the ends of 

the boxcar, leaving marks on the boxcar and ground. The marks on the boxcar are 

labeled A’ and B’; on the ground, A and B. The events recorded by the observers 

are the light signals from the lightning bolts. The two light signals reach observer 

O at the same time.”

(The relativity of) Simultaneity 
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Time dilation

• Time dilation reflects the fact that observers in different inertial 

frames always measure different time intervals between a pair of 

events.
• Specifically, an observer O at rest will measure 

a longer time between a pair of events than an 

observer O’ in motion, i.e., moving clocks tick 

more slowly than stationary clocks!
• The amount by which the observer at rest 

sees the time interval “dilated” with respect 

to the measurement by O’ is given by the 

factor called Lorentz factor γ:
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Time dilation in practice

• Recall our mention of cosmic ray air 

showers…
• Relativistic nuclei strike the atmosphere, 

causing a huge cascade of high energy 

decay products.
• Many of these are detected at Earth’s 

surface.
• However, most of them (like π’s and μ’s) 

are very unstable and short-lived.  
• How do they make it to Earth’s surface?
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Time dilation in practice 

Naively:
• The mean lifetime of the muon (in its rest frame) is 2.2 microseconds.
• Most air shower muons are generated high in the atmosphere (~8 km 

altitude). 
• If they travel at 99.9% of the speed of light c, should they make it to Earth 

from that altitude?

This suggests that muons should not be able to make it to Earth’s  
surface.  But we detect them.  Where did the calculation go wrong?
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Time dilation in practice

Accounting for relativity:
• In the lab (the stationary frame), the muon’s lifetime undergoes time 

dilation (a muon’s clock ticks slower…).
• Therefore, we have an effective lifetime to deal with:

So the muon can certainly make it to the ground, on 
average, when we account for relativistic effects.
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Transformation between reference frames

• Using the postulates of Special Relativity, we can start to work out 

how to transform coordinates between different inertial observers.
• What is a transformation? It’s a mathematical operation that takes 

us from one inertial observer’s coordinate system into another’s.
• The set of possible transformations between inertial reference 

frames are called the Lorentz Transformations.
• They form a group (in the mathematical sense of “group theory”).
• The possible Lorentz Transformations: 

• Translations
• Rotations
• Boosts
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Translations (fixed displacements)

• In fixed translations, the two observers have different origins, but 

don’t move with respect to each other.

• In this case, the observers’ clocks differ 

by a constant b0 and their positions 

differ by a constant vector b:
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Rotations (fixed)

• In fixed rotations, the two observers 

have a common origin and don’t 

move with respect to each other.
• In this case, the observers’ 

coordinates are rotated with respect 

to each other.
• The spatial transformation can be 

accomplished with a rotation matrix; 

measured times are the same:
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Boosts

• In boosts, the two frame axes are aligned, 

but the frames move at constant velocity 

with respect to each other.
• The origins are chosen here to coincide at 

time t=0 in both frames.
• The fact that the observers’ coordinates 

are not fixed relative to each other makes 

boosts more complex than translations and 

rotations.
• It is in boosts that the constancy of the 

speed of light plays a big role.
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Boosts: Galileo vs Lorentz

• Suppose we have two observers O and O’. O is at rest, and O’ moves 

along the x direction with constant velocity v.
• According to Galileo, the transformation between the coordinates of O 

and O’ is pretty simple.
• According to Lorentz and Einstein, we get complicated expressions with 

many factors of c involved: the so-called Lorentz transformations.
• If an event occurs at position (x,y,z) and time t for observer O, what are 

the space-time coordinates (x’,y’,z’) and t’ measured by O’?
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Note the Lorentz factor γ in the Lorentz boosts.21



Lorentz (length) contraction

• Suppose a moving observer O’ puts a rigid “meter" stick along the x’ axis: 

one end is at x’=0 and the other at x’=L’=L0.
• Now an observer O at rest measures the length of the stick at time t=0, 

when the origins of O and O’ are aligned. What will O measure for the 

length? 
• Using the first boost equation x’=γ(x-vt) at time t=0, it looks like the 

lengths are related by:
moving at rest

This is the Lorentz contraction: if an object has length L0 when it is at 
rest, then when it moves with speed v in a direction parallel to its length, 

an observer at rest will measure its length as the shorter value L0/γ.
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Lorentz Contraction

• An example of Lorentz contraction in the case of collisions of two 

gold nuclei at the RHIC collider at Brookhaven Lab on Long Island:

• In typical collisions (200 GeV), nuclei have a Lorentz factor of O(200).
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Velocity addition

• Finally, let’s briefly derive the rule for addition of relativistic velocities (we 

will need to use the boost equations…)
• Suppose a particle is moving in the x direction at speed u’ with respect to 

observer O’. What is its speed u with respect to O?
• Since the particle travels a distance Δx=γ(Δx’+vΔt’)–an “inverse” 

boost –in time Δt=γ (Δt’+(v/c2) Δx’), the velocity in frame O is: 

• Since u=Δx/Δt and u’=Δx’/Δt’, we get the addition rule: 

where v is the relative 
velocity of the two 

inertial frames.
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Four-vector notation

• This is a way to simplify notation for all we’ve talked about so far.
• Soon after Einstein published his papers on Special Relativity, 

Minkowski noticed that regarding t and (x,y,z) as simply 
four coordinates in a 4-D space (“space-time”) really 

simplified many calculations.
• In this spirit, we can introduce a position-time four-vector xμ, where 

μ=0,1,2,3, as follows:
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Lorentz boosts in four-vector notation

• In terms of the 4-vector xμ, a Lorentz boost along the x1 (that is, the 

x) direction looks like:

• As an exercise, you can show that the above equations recover the 

Lorentz boosts we discussed earlier. 
• FYI, this set of equations also has a very nice and useful matrix form.
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Lorentz boosts in matrix form

• Using 4-vectors, we can write the Lorentz boost transformation as a 

matrix equation:

• Looks very similar to the 3-D rotation!
• Mathematically, boosts and rotations are actually very close 

“cousins”. We can understand this connection using the ideas of 

group theory.
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Invariant quantities

• The utility of 4-vectors comes in when we start to talk about 

invariant quantities.
• Definition: a quantity is called invariant if it has the 

same value in any inertial system.
• Recall: the laws of physics are always the same in any inertial 

coordinate system (this is the definition of an inertial observer).
• Therefore, these laws are invariants, in a sense.

• The identification of invariants in a system is often the best way to 

understand its physical behavior.
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Example of invariant quantity

• Think of a 3-vector (x,y,z). An example of an invariant is its square 

magnitude: r2=x2+y2+z2, whose value does not change under 

coordinate rotations.
• Consider a rotation about the z-axis:

29



4-vector scalar product

• The quantity Δs2, given by:

is called the scalar product of xμ with itself.
• It has the same value in any coordinate system (just like any scalar).

• This spacetime interval is often called the proper length.
• To denote the scalar product of two arbitrary 4-vectors aμ and bμ, it 

is convenient to drop the Greek index and just write:

• In this case, the 4-vectors a and b are distinguished from their spatial 3-

vector components, by the little arrow overbar.
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4-vector scalar product

• Terminology: any arbitrary 4-vector aμ  can be classified by the sign of 

its scalar product a2:

1. If a2>0, aμ is called time-like because the time component dominates 

the scalar product.

2. If a2<0, aμ is called space-like because the spatial components 

dominate a2.

3. If a2 = 0, aμ is called light-like or null because, as with photons, the 

time and space components of aμ cancel.
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The light cone, revisited

• A set of points all connected to a single 

event E by lines moving at the speed of light 

is called the light cone.
• The set of points inside the light cone are 

time-like separated from E.
• The set of points outside the cone are 

space-like separated from E.
• Points outside the cone cannot casually 

affect (or be affected by) the event E.
• Signal from these points cannot make it 

to the event. Past and future light cones for an event 
E, with z dimension suppressed, and 
units defined such that c=1. 

32



Back to particle physics…

• Why is relativity so prevalent and fundamental in this field?
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SR in particle physics

• We will talk about relativistic kinematics - the physics of particle collisions 

and decays.
• In the context of what we have discussed so far, we start to think of 

particles as moving “observers”, and scientists as stationary observers.
• The reference frame of particles is often called the “particle rest 

frame”, while the frame in which the scientist sits at rest, studying the 

particle, is called the “lab frame”.
• To begin, let’s define (not derive) the notions of relativistic energy, 

momentum, and the mass-energy relation.
• These should reduce to classical expressions when velocities are very 

low (classical limit).

We will be applying the algebra of 4-vectors to particle physics.
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Relativistic momentum

• The relativistic momentum (a three-vector) of a particle is similar to 

the momentum you’re familiar with, except for one of those factors 

of γ:

• The relativistic momentum agrees with the more familiar expression 

in the so-called “classical regime” where v is a small fraction of c.
• In this case:

(Taylor expansion)
35



Relativistic energy

• The relativistic energy (excluding particle interactions) is quite a bit 

different from the classical expression:

• When the particle velocity v is much smaller than c, we can expand the 

denominator to get:

• The second term here corresponds to the classical kinetic energy, while the 

leading term is a constant.
• This is not a contradiction in the classical limit, because in classical mechanics 

we can offset particle energies by arbitrary amounts.
• The constant term is called the rest energy of 

the particle and it is Einstein’s famous equation:
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Energy-momentum four-vector

• It is convenient to combine the relativistic energy and momentum into a 

single 4-vector called the four-momentum.

• The four-momentum, denoted pμ or just p, is defined by:

The scalar product of the four-momentum with itself gives us an invariant 

that depends on the mass of the particle under study.
• Squaring pμ  yields the famous relativistic energy-momentum relation (also 

called the mass-shell formula):

The Lorentz-invariant quantity that 
results from squaring  
4-momentum is called the invariant 
mass.37



Classical vs. relativistic mass shell

• In classical physics, the mass-shell relation is 

quadratic in the momentum:

• This is called the mass-shell formula because 

if one plots E vs p in two dimensions, the 

function looks like a parabolic shell.
• Jargon: particles that obey the relativistic 

mass-shell relation are said to be “on mass 

shell”:
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Classical vs. relativistic mass shell

• The relativistic mass shell, due to the presence of the rest energy, 

looks like a hyperbola.
l Relativistic mass shell  
for 1D motion (m≠0). 

Relativistic mass shell for 1D 
motion  (m=0) (boundary of 
the light cone).

• Unlike classical mechanics, zero-

mass particles are allowed if they 

travel at the speed of light.

• In the case of zero mass, the mass-

shell relation reduces to:
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Collisions and kinematics

• Why have we introduced energy and momentum?
• These quantities are conserved in any physical process 

(true in any inertial frame!).
• The cleanest application of these conservation laws in particle 

physics is to collisions.
• The collisions we will discuss are somewhat idealized; we essentially 

treat particles like billiard balls, ignoring external forces like gravity 

or electromagnetic interactions.
• Is this a good approximation? Well, if the collisions occur fast enough, 

we can ignore the effects of external interactions (these make the 

calculation much harder!).
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Classical vs. relativistic collisions

• In classical mechanics, recall the usual conservation laws:

1. Mass is conserved;

2. Momentum is conserved;

3. Kinetic energy may or may not be conserved.
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Classical vs. relativistic collisions

• In classical mechanics, recall the usual conservation laws:

1. Mass is conserved;

2. Momentum is conserved;

3. Kinetic energy may or may not be conserved.

relativistic

Relativistic energy
Relativistic momentum

Note: conservation of energy and momentum can be 
encompassed into conservation of four-momentum.
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Inelastic collisions

• There is a difference in interpretation between classical and relativistic 

inelastic collisions.
• In the classical case, inelastic collisions mean that kinetic energy is 

converted into “internal energy” in the system (e.g., heat).
• In special relativity, we say that the kinetic energy goes into rest energy.

• Is there a contradiction? 
• No, because the energy-mass relation E=mc2, tells us that all “internal" 

forms of energy are manifested in the rest energy of an object.
• In other words, hot objects weigh more than cold objects. But this is 

not a measurable effect even on the atomic scale!
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Mass-energy equivalence
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SR in particle physics

• Consider the decay π+ →μ+ νμ:

Before After

π+

μ+

νμ
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Summary

• Lorentz boosts to and from a moving reference frame:

• Relativistic momentum and energy:

relativistic momentum

relativistic energy

rest energy

relativistic kinetic energy

mass-shell relation
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Schedule
1. Introduction

2. History of Particle Physics

3. Special Relativity

4. Quantum Mechanics

5. Experimental Methods

6. The Standard Model - Overview

7. The Standard Model - Limitations

8. Neutrino Theory

9. Neutrino Experiment

10. LHC and Experiments

11. The Higgs Boson and Beyond

12. Particle Cosmology
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Quantum Mechanics

Particles and Waves
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Topics for Today

• Quantum phenomena:
- Quantization: how Nature comes in discrete packets
- Particulate waves and wavelike particles
- Understanding quantum phenomena in terms of waves.
- The Schrödinger Equation

• Interpreting quantum mechanics (QM):
- The probabilistic interpretation of quantum mechanics
- The Uncertainty Principle and the limits of observation.

• Understanding the Uncertainty Principle:
- Building up wave packets from sinusoids.
- Why the Uncertainty Principle is a natural property of 

waves.

Recommended reading
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What is Quantum Mechanics (QM)?

• QM is the study of physics at very small scales - specifically, when the 

energies and momenta of a system are of the order of Planck’s 

constant: 

ħ = h/2π ≅ 6.6×10-16eV.s

• On the quantum level, “particles" exhibit a number of non-classical 

behaviors:

1. Discretization (quantization) of energy, momentum charge, spin, etc. 

Most quantities are multiples of e and/or h.

2. Particles can exhibit wavelike effects: interference, diffraction, …

3. Systems can exist in a superposition of states.
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Quantization of electric charge

• Recall: 
• J.J. Thomson (1897): electric charge is 

corpuscular, “stored” in electrons.
• R. Milikan (1910): electric charge is 

quantized, always showing up in integral 

multiples of e.
• Milikan’s experiment: measuring the 

charge on ionized oil droplets.

R.A. Millikan  
Nobelprize.org
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The oil drop experiment

• The experiment entailed balancing 

the downward gravitational force 

with the upward buoyant and 

electric forces on tiny charged 

droplets of oil suspended between 

two metal electrodes.
• Since the density of the oil was 

known, the droplets’ masses could 

be determined from their observed 

radii.
• Using a known electric field, Milikan 

and Fletcher could determine the 

charge on oil droplets in mechanical 

equilibrium.
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The oil drop experiment

• By repeating the experiment for 

many droplets, they confirmed that 

the charges were all multiples of 

some fundamental value.
• They calculated it to be 

1.5924(17)x10-19 C, within 1% of the 

currently accepted value of 

1.602176487(40)x10-19 C.
• They proposed that this was the 

charge of a single electron.
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Quantization of energy

• Recall: 
• M. Planck (1900): blackbody radiation 

spectrum can be explained if light of 

frequency ν comes in quantized energy 

packets, with energies of hν.

• A. Einstein (1905): photoelectric effect can only be theoretically 

understood if light is corpuscular.
• N. Bohr (1913): discrete energy spectrum of the hydrogen atom can be 

explained if the electron’s angular momentum about the nucleus is 

quantized.
• In an atom, angular momentum mvr always comes in integral multiples 

of ħ = h/2π.
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Quantization of energy

• Recall: 
• M. Planck (1900): blackbody radiation 

spectrum can be explained if light of 

frequency ν comes in quantized energy 

packets, with energies of hν.

• A. Einstein (1905): photoelectric effect can only be theoretically 

understood if light is corpuscular.
• N. Bohr (1913): discrete energy spectrum of the hydrogen atom can be 

explained if the electron’s angular momentum about the nucleus is 

quantized.
• In an atom, angular momentum mvr always comes in integral multiples 

of ħ = h/2π.
56



Quantization of spin

• The particle property called spin, is also quantized in 

units of ħ.
• All particles have spin: it is an inherent property, like 

electric charge, or mass.
• A magnetic phenomenon, spin is very important.

• If you understand bar magnets, you (somewhat) 

understand spin.
• Spin is closely related to Pauli’s Exclusion Principle 

(Spin Statistic Theorem), which relates the change in 

sign of the QM wavefunction when two identical 

particles are exchanged in a system (more on this 

later…).
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How does spin enter the picture?

• How do particles get a magnetic moment? 
• Enter spin.  Imagine an electron as a rotating ball 

of radius R, with its charge distributed over the 

volume of the sphere.
• The spinning sets up a current loop around the 

rotation axis, creating a small magnetic dipole: 

like a bar magnet!
• The spinning ball gets a dipole moment:

• Spin S is a vector that points along the axis of 

rotation (by the “right-hand rule”). The moment 

μ points in the opposite direction.
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Spin-magnetism analogy

• To some extent, all elementary particles behave like tiny bar magnets, as if 

they had little N and S magnetic poles.

Similarly, an object with a magnetic 
moment will try to anti-align itself with a 

magnetic field. 

• Jargon: if a particle behaves in this way in a magnetic field, it is said to have a 

non-zero magnetic dipole moment μ. In a B field, such a particle will feel a 

force:

Two bar magnets set side by side will try  
to anti-align such that the north and south  

poles “match up.”
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Quantization of spin

• If an electron is a spinning ball of charge, we 

understand how its magnetic moment arises.
• This is still classical physics: the spin axis may point in 

any direction. But, Nature is very different!
• O. Stern and W. Gerlach (1921): 

• While measuring Ag atom spins in a B field, they 

found that spin always aligns in two opposite 

directions, “up" and “down”, relative to the field.
• Moreover, the magnitude of the spin vector is 

quantized in units of ħ.
• All elementary particles behave this way: their spins 

are always quantized, and when measured only point 

in certain directions (“space quantization”).
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Quantization of spin

• O. Stern and W. Gerlach (1921): 
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Understanding spin

• If elementary particles like the electron are actually little spinning spheres 

of charge, why should their spins be quantized in magnitude and direction?
• Classically, there is no way to explain this behavior.
• In 1925, S. Goudsmidt and G. Uhlenbeck realized that the classical model 

just cannot apply: electrons do not spin like tops; magnetic behavior must 

be explained some other way.
• Modern view: spin is an intrinsic property of all elementary particles, like 

charge or mass. 
• It is a completely quantum phenomenon, with no classical analog.

Like most other quantum mechanical properties, allowed spin values 

are restricted to certain numbers proportional to ħ. 

The classically expected continuum of values is not observed.

62



Quantization summarized

• General rule in QM: 
• Measurable quantities tend to come in integral (or half-integral) 

multiples of fundamental constants.
• Almost all of the time, Planck’s constant is involved in the quantized 

result. It’s truly a universal, fundamental constant of Nature.
• Question: why don't we observe quantization at macroscopic 

scales?
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Quantization summarized

• General rule in QM: 
• Measurable quantities tend to come in integral (or half-integral) 

multiples of fundamental constants.
• Almost all of the time, Planck’s constant is involved in the quantized 

result. It’s truly a universal, fundamental constant of Nature.
• Question: why don't we observe quantization at macroscopic 

scales?
• Answer: due to the smallness of Planck's constant.
• This is analogous to Special Relativity, where the small size of the 

ratio v/c at everyday energy scales prevents us from observing the 

consequences of SR in the everyday world.
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More quantum weirdness

• Observation tells us that physical quantities are not continuous 

down to the smallest scales, but tend to be discrete.
• OK, we can live with that…

• But QM has another surprise: if you look small enough, matter - that 

is, “particles” - start to exhibit wavelike behavior.
• We have already seen hints of this idea.
• Light can behave like a wave, and it can behave like a particle, 

depending on the circumstances…
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More quantum weirdness

• L. de Broglie (1924) suggested that the wave-particle behavior of 

light might apply equally well to matter.
• Just as a photon is associated with a light wave, so an electron could 

be associated with a matter wave that governs its motion.
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The de Broglie hypothesis

• de Broglie’s suggestion was a very bold statement about the 

symmetry of Nature.
• Proposal: the wave aspects of matter are related to its particle 

aspects in quantitatively the same way that the wave and particle 

aspects of light are related.
• Hypothesis: for matter and radiation, the total energy E of a particle 

is related to the frequency ν of the wave associated with its motion 

by:

E = hν 

• If E=pc (recall SR), then the momentum p of the particle is related to 

the wavelength λ of the associated wave by the equation:

p = h/λ

L. de Broglie  
Nobelprize.org
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The de Broglie hypothesis

• p = h/λ or λ=h/p → de Broglie relation

• It holds even for massive particles.
• It predicts the de Broglie wavelength of a matter wave associated 

with a material particle of momentum p.

de Broglie hypothesis: particles are also 
associated with waves, which are 

extended disturbances in space and time. 

group velocity
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Matter waves and the classical limit

• Question: if the de Broglie hypothesis is correct, why don’t 

macroscopic bodies exhibit wavelike behaviors?
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Matter waves and the classical limit

• Question: if the de Broglie hypothesis is correct, why don’t 

macroscopic bodies exhibit wavelike behaviors?
• Smallness of h!

• What is your de Broglie wavelength?
• What is the de Broglie wavelength of a 

100 eV electron?

Put things in perspective?
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Testing the wave nature of matter

• Macroscopic particles do not have measurable de Broglie 

wavelengths, but electron wavelengths are about the characteristic 

size of X-rays.
• So, we have an easy test of the de Broglie hypothesis:

• Check if electrons exhibit wavelike behavior (diffraction, 

interference, …) under the same circumstances that X-rays do.
• First, let’s talk a little bit about X-rays and X-ray diffraction.

72



X-rays

• W. Röntgen (1895): discovers X-rays, high energy photons with 

typical wavelengths near 0.1 nm.
• Compared to visible light (λ between 400 and 750 nm), X-rays have 

extremely short wavelengths and high penetrating power.
• Early in the 20th century, physicists proved that X-rays are light waves 

by observing X-ray diffraction from crystals.

The first medical röntgengram:  
a hand with buckshot, 1896.
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X-ray crystallography

• How it’s done: take X-rays and shoot them 

onto a crystal specimen.
• Some of the X-rays will scatter backwards 

off the crystal.
• When film is exposed to the backscattered X-

rays, geometric patterns emerge.
• In this image, the dark spots correspond to 

regions of high intensity (more scattered X-

rays).
• The geometry of the pattern is characteristic 

of the structure of the crystal specimen. 
• Different crystals will create different 

scattering patterns.
Negative image of an X-ray diffraction 
pattern from a beryllium aluminum 
silicate crystal.  The X-rays seem to 
scatter only in preferred directions74



X-ray diffraction

• What is the process behind X-ray 

crystallography?
• Why do X-rays appear to scatter off 

crystals in only certain directions?
• This behavior can only be understood if 

X-rays are waves.
• The idea: think of the crystal as a set of 

semi-reflective planes.
• The X-rays reflect from different planes in 

the crystal, and then constructively and 

destructively interfere at the film screen.
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Basic wave concepts

• To understand waves in QM, let’s 

review some basic wave concepts.
• Wavelength l: the repeat distance of a 

wave in space.
• Period T: the “repeat distance” of a 

wave in time.
• Frequency ν: the inverse of the period; 

ν = 1/T.
• Amplitude A: the wave’s maximum 

displacement from equilibrium. 
• Classically, this determines a wave’s 

intensity.

Wavelength is easy to visualize; it is the 
distance over which the wave starts to 

repeat. 

For an object executing periodic motion, 
like a mass on a spring, the period is just 

the time interval over which the wave 
starts to repeat. 

76



Basic concept: interference

• Principle of Superposition: you can add up any number of waves (sinusoids) 

to get another wave.
• The resultant wave may be larger or smaller than its components, depending 

on their relative phase angles.
• Phases can be understood in terms of motion on the unit circle.

• Hence, waves interfere, canceling each other at certain locations.
• Interference is what gives rise to the light and dark spots in the X-ray 

diffraction pattern.

Waves can add or cancel, depending on 
their relative phase.  You can visualize 

phase by imagining uniform circular 
motion on a unit circle.
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How X-ray interference works

• Consider two X-ray beams 

reflecting from two crystal planes a 

distance d >> 0.1nm apart.
• The wave reflecting from the lower 

plane travels a distance 2l farther 

than the upper wave.
• If an integral number of wavelengths 

nλ just fits into the distance 2l, the 

two beams will be in phase and will 

constructively interfere.
• Only certain incident angles lead to 

constructive interference:
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Electron diffraction

• Scattering electrons off crystals 

also creates a diffraction pattern!
• Electron diffraction is only 

possible if electrons are waves.
• Hence, electrons (matter 

particles) can also behave as 

waves.

Diffraction pattern created by 
scattering electrons off a crystal.  (This 

is a negative image, so the dark spots 
are actually regions of constructive 

interference.) Electron diffraction is 
only possible if electrons are waves. 
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Observation of electron diffraction

• Electron diffraction was first observed in a famous 1927 experiment by 

Davisson and Germer.
• They fired 54 eV electrons at a nickel target and observed diffraction 

peaks consistent with de Broglie’s hypothesis.
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Understanding matter waves

• Let’s think a little more about de Broglie waves.
• In classical physics, energy is transported either by waves or by 

particles.
• Particle: a definite, localized bundle of energy and momentum, like 

a bullet that transfers energy from gun to target.
• Wave: a periodic disturbance spread over space and time, like 

water waves carrying energy on the surface of the ocean.
• In quantum mechanics, the same entity can be described by both a 

wave and a particle model:
• Electrons scatter like localized particles, but they can also diffract 

like extended waves.
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The wave function

• Okay, particles ↔ waves.

• How do we represent wave-particles mathematically?
• Classically: a particle can be represented solely by its position x and momentum 

p. If it is acted on by an external force, we can find x and p at any time by 

solving a differential equation like:

• A wave is an extended object, so we can’t represent it by the pair of numbers 

(x,p).
• Instead, for a wave moving at velocity c=λν, we define a “wave function” ψ(x,t) 

that describes the wave’s extended motion in time and space.
• To find ψ(x,t) at any position and time, we solve a differential equation like:

Something similar  
applies to particles…
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Wave equation for quantum waves

• Time evolution of waves can usually be found by solving a 

wave equation like:

• E. Schrödinger (1926) found that quantum particles moving in a 1D 

potential V(x) obey the partial differential equation:

• Notice anything?

E. Schrodinger 
Nobelprize.org
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Wave equation for quantum waves

• Time evolution of waves can usually be found by solving a 

wave equation like:

• E. Schrödinger (1926) found that quantum particles moving in a 1D 

potential V(x) obey the partial differential equation:

✓ This expression involves ħ, the usual QM parameter.
✓ It also involves the number i, which means that the waves ψ(x,t) are complex.

E. Schrodinger 
Nobelprize.org
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The de Broglie wave

• Particles can be described by de Broglie waves of wavelength λ=h/p. 
• For a particle moving in the x direction with momentum p=h/λ and 

energy E=hν, the wave function can be written as a simple sinusoid 

of amplitude A:

• The propagation velocity c of this wave is:
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Quantum waves summarized

• An elementary particle like a photon can act like a particle 

(Compton effect, photoelectric effect) or a wave (diffraction), 

depending on the type of experiment / observation.
• If it’s acting like a particle, the photon can be described by its 

position and momentum x and p. If it’s acting like a wave, we must 

describe the photon with a wave function ψ(x,t).
• Two waves can always superpose to form a third: ψ = ψ1 + ψ2.

• This is what gives rise to interference effects like diffraction.
• The wave function for a moving particle (a traveling wave) has a 

simple sinusoidal form.
• But how do we interpret ψ(x,t) physically?
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Interpretation of the wave function

• We have seen that any wave can be described by a wave function 

ψ(x,t).
• For any wave, we define the wave’s intensity I to be:

where the asterisk signifies complex conjugation. Note that for a 

plane wave this is the square of A (a constant):

• Let’s use the concept of intensity and a simple thought experiment 

to get some intuition about the physical meaning of the de Broglie 

wave function.
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The double slit experiment

• Experiment: a device sprays an electron beam at a wall with two small 

holes in it. The size of the holes is close to the electrons’ wavelength λdB.

• Behind the wall is a screen with an 

electron detector.
• As electrons reach the screen, the 

detector counts up how many 

electrons strike each point on the 

wall.
• Using the data, we plot the intensity 

I(x): the number of electrons 

arriving per second at position x.
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The double slit experiment

• The classical result:

• If electrons are classical particles, we expect the intensity in front of each 

slit to look like a bell curve, peaked directly in front of each slit opening.
• When both slits are open, the total intensity I1+2 on the screen should 

just be the sum of the intensities I1 and I2 when only one or the other slit 

is open.
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The double slit experiment

• In practice:

• When we perform the real experiment, a strange thing happens.
• When only one slit is open, we get the expected intensity distributions.
• But when both slits are open, a wavelike diffraction pattern appears.
• Apparently, the electrons are acting like waves in this experiment.
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Wave function interpretation

• In terms of waves, the wave function of an electron at the screen when only slit 

1 is open is ψ1, and when only slit 2 is open it’s ψ2.

• Hence, the intensity when only one slit is open is either I1=|ψ1|2 or I2=|ψ2|2.
• With both slits open, the intensity at the screen is I1+2=|ψ1+ψ2|2, not just I1+I2!  
• When we add the wave functions, we get constructive and destructive 

interference; this is what creates the diffraction pattern. 
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Wave function and probability

• If electrons create a diffraction pattern, they 

must be waves. But when they hit the screen, 

they are detected as particles. 
• How do we interpret this?

• M. Born: Intensity I(x)=|ψ(x,t)|2 actually refers 

to probability a given electron hits the 

screen at position x.
• In QM, we don’t specify the exact location of an 

electron at a given time, but instead state by 

I(x)=|ψ(x,t)|2 the probability of finding a particle 

at a certain location at a given time.

Diffraction pattern from an actual 
electron double slit experiment.  

Notice how the interference pattern 
builds particle by particle.

The probabilistic interpretation gives physical 

meaning to ψ(x,t): it is the “probability 

amplitude” of finding a particle at x at time t.
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Is there a contradiction?

• We now understand the wave function in terms of the probability of a 

particle being someplace at some time.
• However, there is another problem to think about.

• Since the electrons diffract, they show wavelike behavior; but when they 

hit the screen, they interact like particles. And if they are particles, then 

shouldn't they only go through one slit at a time?
• If this is the case, how can an electron’s wave undergo double slit 

interference when the electron only goes through one slit?
• Seems impossible…

93



Is there a contradiction?

• We now understand the wave function in terms of the probability of a 

particle being someplace at some time.
• However, there is another problem to think about.

• Since the electrons diffract, they show wavelike behavior; but when they 

hit the screen, they interact like particles. And if they are particles, then 

shouldn't they only go through one slit at a time?
• If this is the case, how can an electron’s wave undergo double slit 

interference when the electron only goes through one slit?
• Seems impossible…

• To test what’s going on, suppose we slow down the electron gun so that 

only one electron at a time hits the wall.
• We then insert a device over each slit that tells us if the electron 

definitely went through one slit or the other.
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Destroying the interference pattern

• We add electron detectors that shine light across each slit.
• When an electron passes through one of the slits, it breaks the beam, 

allowing us to see whether it traveled through slit 1 or slit 2 on its way to 

the backstop.
• Result: if we try to detect the electrons at one of the two slits in this way, 

the interference pattern is destroyed! In fact, the pattern now looks like the 

one expected for classical particles.

!
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Complementarity

• Why did the interference pattern disappear?
• Apparently, when we used the light beam to localize the electron at 

one slit, we destroyed something in the wave function ψ(x,t), that 

contributes to interference.
• Principle of Complementarity (N. Bohr): if a measurement proves 

the wave character of radiation or matter, it is impossible to prove 

the particle character in the same measurement, and vice-versa.
• The link between the wave and particle models is provided by the 

probability interpretation of ψ(x,t), in which an entity’s wave gives 

the probability of finding its particle at some position.
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Complementarity

• Why did the interference pattern disappear?
• Apparently, when we used the light beam to localize the electron at 

one slit, we destroyed something in the wave function ψ(x,t), that 

contributes to interference.
• Principle of Complementarity (N. Bohr): if a measurement proves 

the wave character of radiation or matter, it is impossible to prove 

the particle character in the same measurement, and vice-versa.
• The link between the wave and particle models is provided by the 

probability interpretation of ψ(x,t), in which an entity’s wave gives 

the probability of finding its particle at some position.

“You changed the outcome by 
measuring it!”
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Schrodinger’s cat
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The Uncertainty Principle

• There seems to be some fundamental constraint on QM 

that prevents matter from acting wave-like and particle-like 

simultaneously.
• Moreover, it appears that our measurements can directly affect 

whether we observe particle or wavelike behavior.
• These effects are encapsulated in the Uncertainty Principle.
• Heisenberg: quantum observations are fundamentally limited in 

accuracy.

Werner 
Heisenberg, 

Nobelprize.org
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The Uncertainty Principle (1)

• According to classical physics, we can (at the same instant) measure 

the position x and momentum px of a particle to infinite accuracy if 

we like. We’re only limited by our equipment.
• However, Heisenberg’s uncertainty principle states that experiment 

cannot simultaneously determine the exact values of x and px.
• Quantitatively, the principle states that if we know a particle’s 

momentum px to an accuracy Δpx, and its position x to within some 

Δx, the precision of our measurement is inherently limited such 

that: 
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Using the Uncertainty Principle

• Does the Uncertainty Principle (UP) mean that we can’t measure position 

or momentum to arbitrary accuracy?
• No. The restriction is not on the accuracy to which x and px can be 

measured, but rather on the product ΔpxΔx in a simultaneous 

measurement of both.
• The UP implies that the more accurately we know one variable, the less 

we know the other. If we could measure a particle’s px to infinite 

precision, so that Δpx=0, then the uncertainty principle states:

• In other words, after our measurement of the particle’s direction 

(momentum), we lose all information about its position!
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The Uncertainty Principle (2)

• The Uncertainty Principle has a second part 

related to measurements of energy E and the 

time t needed for the measurements. It states 

that:

• Example: estimate the mass of virtual particles 

confined to the nucleus (see Lecture 2 on 

estimating Yukawa’s meson mass).
• Example: Δt could be the time during which a 

photon of energy spread ΔE is emitted from an  

atom.

• This effect causes spectral lines in excited 

atoms to have a finite uncertainty Δλ (“natural 

width”) in their wavelengths.

Atomic spectral lines, the result 
of transitions that take a finite 

time, are not thin “delta 
function” spikes, but actually 

have a natural width due to the 
Uncertainty Principle. 
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Uncertainty and the double slit

• Now that we know the UP, we can understand 

why we can’t “beat" the double slit experiment 

and simultaneously observe wave and particle 

behavior.
• Basically, our electron detector Compton scatters 

light off of incoming electrons.
• When an electron uses one of the slits, we 

observe the scattered photon and know that an 

electron went through that slit.
• Unfortunately, when this happens, the photon 

transfers some of its momentum to the electron, 

changing its momentum.

Detection photon Compton 
scatters off an incoming 
electron, transferring its 

momentum. 
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• If we want to know the slit used, the photon’s wavelength must be smaller 

than the spacing between the two slits.
• Hence, the photon has to have a large momentum (remember, λ=h/p).
• As a result, a lot of momentum gets transferred to the electron - enough 

to effectively destroy the diffraction pattern.

Uncertainty and the double slit

If the wavelength of the scattering 
photon is small enough to pinpoint 
the electron at one of the slits, the 
resulting momentum transfer is large 
enough to “push” the electron out 
of the interference minima and 
maxima.  The diffraction pattern is 
destroyed.
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• If we try to pinpoint the electron at one of the slits, we change its 

motion, and the interference pattern vanishes.
• Can you think of a way to get around this problem?

Uncertainty and the double slit
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• If we try to pinpoint the electron at one of the slits, we change its 

motion, and the interference pattern vanishes.
• Can you think of a way to get around this problem?
• We could use lower energy photons…
• It turns out, that just when the photon momentum gets low enough 

that electron diffraction reappears, the photon wavelength becomes 

larger than the separation between the two slits (see Feynman 

Lectures on Physics, Vol. 3).
• This means we can no longer tell which slit the electron went 

through!

Uncertainty and the double slit
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There is no way to beat the Uncertainty Principle…
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Why the Uncertainty Principle

• Let’s review what we have said so far about matter waves and quantum 

mechanics.
• Elementary particles have associated matter waves ψ(x,t). The intensity of 

the wave, I(x)=|ψ(x,t)|2, gives the probability of finding the particle at 

position x at time t.
• However, QM places a firm constraint on the simultaneous 

measurements we can make of a particle’s position and momentum: 

ΔpxΔx≥ħ/2.
• This last concept, the Uncertainty Principle, probably seems very 

mysterious. However, it turns out that it is just a natural consequence of 

the wave nature of matter, for all waves obey an Uncertainty Principle!
• Let’s take a look… 
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Probabilities and waves, again

• Consider a particle with de Broglie wavelength λ.

• Defining the wave number k = 2π/λ and the angular frequency  
ω= 2πν, the wave function for such a particle could be (conveniently) 

written: 

• If the wavelength has a definite value λ there is no uncertainty Δλ, and 

hence p=h/λ is also definite. 
• Such a wave is a sinusoid that extends over all values of x with 

constant amplitude. 
• If this is the case, then the probability of finding the particle should be 

equally likely for any x; in other words, the location of the particle is 

totally unknown. Of course, this should happen, according to the 

Uncertainty Principle. 
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Wave functions should be finite

• If a wavefunction is infinite in extent, like ψ =Asin2π(x/λ-νt), the 

probability interpretation suggests that the particle could be anywhere: 

Δx=∞. 

• If we want particles to be localized to some smaller Δx, we need one 

whose amplitude varies with x and t, so that it vanishes for most values of 

x.  But how do we create a function like this?
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Building wave packets

• In order to get localized particles, their corresponding wave 

functions need to go to zero as x→±∞.  Such a wave function is 

called a wave packet. 
• It turns out to be rather easy to generate wave packets: all we have 

to do is superimpose, or add up, several sinusoids of different 

wavelengths or frequencies. 
• Recall the Principle of Superposition: any wave ψ can be built up by 

adding two or more other waves. 
• If we pick the right combination of sinusoids, they will cancel at 

every x other than some finite interval (Fourier Theorem).
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Superposition example: beats

• You may already know that adding two sine waves of slightly different 

wavelengths causes the phenomenon of beats (see below). 
• A typical example: using a tuning fork to tune a piano string.  If you 

hear beats when you strike the string and the tuning fork 

simultaneously, you know that the string is slightly out of tune.

The sum of two sine waves of slightly 
different wavelengths results in beats.  
The beat frequency is related to the 
difference between the wavelengths. 

This is a demonstration of how adding 
two sinusoids creates a wave of 

varying amplitude.

112



Superimposing more sinusoids

• Now, let’s sum seven sinusoidal waves of the form: 

where k=2π/λ and A9= A15=1/4, A10= A14=1/3, A11= A13=1/2, and A12=1. 

• We get a function that is starting to look like a wave packet; however, as 

you can see, it’s still periodic, although in a more complicated  
way than usual: 

Summing up sinusoids to get another 
periodic function.  This is an example of 

Fourier’s Theorem: any periodic 
function may be generated by summing 

up sines and cosines.
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The continuum limit

• So, evaluating a sum of sinusoids like:

where k is an integer that runs between k1 and k2, we can reproduce any 

periodic function. 
• If we let k run over all values between k1 and k2 – that is, we make it a 

continuous variable –then we can finally reproduce a finite wave packet.

By summing over all values of k in an interval Dk= k1-k2, we 
are essentially evaluating the integral 

In such a “continuous sum”, the component sinusoids are 
all in phase near x=0.  Away from this point, in either 
direction, the components begin to get out of phase with 
each other.  If we go far enough out, the phases of the 
infinite number of components become totally random, and 
cancel out phases of component sinusoids completely. 114



Connection to uncertainty

• So, we can sum up sinusoids to get wave packets. 
• What does this actually mean?

• Intuition: we want a wave function that is non-zero only over some 

finite interval Δx.
• To build such a function, we start adding sinusoids whose inverse 

wavelengths, k=2π/λ, take on values in some finite interval Δk. 
• Here’s the point: as we make the interval Δk bigger, the width of the 

wave packet Δx gets smaller. This sounds like the Uncertainty 

Principle!
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Wave-related uncertainties

• As we sum over sinusoids, making the range of k values Δk larger, we 

decrease the width of the resulting function. 
• In fact, there is a fundamental limit here that looks just like the 

position-momentum uncertainty relation. 
• For any wave, the minimum width Δx of a wave packet composed 

from sinusoids with range Δk is Δx=1/(2Δk), or: 

• There is a similar relation between time and frequency:
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Connection to QM

• If k=2π/λ, and λ=h/p, then the uncertainty relation for waves in general 

tells us: 

• We recover the Heisenberg uncertainty relation! 
• By a similar argument, we can show that the frequency-time uncertainty 

relation for waves implies the energy-time uncertainty of quantum 

mechanics. 
• Hence, there is nothing really mysterious about the Uncertainty Principle; 

if you know anything about waves, you see that it arises rather naturally. 
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Summary

• Quantum mechanics is the physics of small objects.
• Its typical energy scale is given by Planck’s constant.

• In QM, variables like position, momentum, energy, etc. tend to take 

on discrete values (often proportional to h). 
• Matter and radiation can have both particle and wavelike properties, 

depending on the type of observation. 
• But by the Uncertainty Principle, objects can never be wavelike or 

particle-like simultaneously.
• Moreover, it is the act of observation that determines whether 

matter behaves like a wave or a particle.
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That’s all for this week…

• Next week: Experimental methods
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Bonus material
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