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Course Policies

Attendance:
* | will take attendance during class.
- Up to four excused absences (two with notes from parent/guardian)

- Send notifications of all absences to shpattendance@columbia.edu

Valid excuses:

* lliness, family emergency, tests or athletic/academic competitions,

mass transit breakdowns

Invalid excuses: sleeping in, missing the train

Please no cell phones.

Ask questions :)



L ecture Materials

- https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram



https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram

Last week...



Relativistic mechanics

What’s wrong with classical mechanics?

* We will see that classical mechanics is only valid in the limiting case
where v—0, or v << c.
- This is generally the case for everyday observables.

- However, this is not the case with particles traveling close to the
speed of light.

- |n that case, classical mechanics fails to describe their behavior.

- To properly describe particle kinematics, and particle dynamics,

we need relativistic mechanics.



The notion of spacetime

Spacetime in Special Relativity Particle “worldline"

* Time is local.

- Observers may not agree that two
events occur at the same time.

* There is no absolute notion of all
space at a moment in time. light cones 4

* The speed of light is constant, and
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cannot be surpassed.
- Every event “exists” within a set of

allowed trajectories ( ).




Basic concepts

Particle “worldline”
* Event: something that occurs at a

specified point in space, at a specified
time.

- Observer: someone who witnesses
and can describe events (also known
as a “frame of reference”) light cones 4

* An observer describes events by
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using “standard” clocks and
rulers which are at rest with

respect to him/her.




Postulates of special relativity

* In 1905, A. Einstein published two papers on special relativity, as well
as a paper on the photoelectric effect (Nobel Prize 1921) and

Brownian motion (the physics of particles suspended in a fluid).

* All of Einstein’s conclusions in special relativity were based on only

two simple postulates:

|. The laws of physics are the same in all inertial reference frames (old

idea, dates to Galileo).

2. All inertial observers measure the same speed c for light in a

vacuum, independent of the motion of the light source.



Postulates of special relativity

* The constancy of the speed of light is
counter-intuitive, because this is not
how “ordinary” objects behave.

- Example: imagine observing an
oncoming car that moves at speed c.

* We expect a moving observer to
measure a different value for ¢ than a
stationary one.

* According to SR, however, we always

measure ¢ for light, regardless of our

motion!

What we expect using Galilean
velocity addition...

Apparent automobile velocity
for observer at rest: €

What apparent automobile velocity
should 0'measure in this case?

Answer: C+ V




Implications of the postulates

- Einstein developed a series of “thought experiments” that illustrate
the interesting consequences of the universality of c. These can be
summarized as:

The illusion of simultaneity

Time dilation

Lorentz (length) contraction

A W N —

Velocity addition (not really a thought experiment)

As we go through Einstein’s examples, keep in mind that
these results may seem a little counterintuitive.
You have to get rid of your Newtonian way of thinking!
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(The relativity of) Simultaneity

- An observer O calls two events simultaneous if they occur at the
same time in his / her coordinates.

* Interestingly, if the two events do not occur at the same position in
frame O, then they will not appear simultaneous to a moving
observer O’.

* In other words, events that are simultaneous in one inertial system
are not necessarily simultaneous in others.

« Simultaneity is not an absolute concept, but one that
depends on the state of motion of the observer.

- Again, this follows from the fact that c is the same in all inertial

frames...
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(The relativity of) Simultaneity

A demonstration: Einstein’s thought experiment.

"A boxcar moves with uniform velocity and two lightning bolts strike the ends of
the boxcar, leaving marks on the boxcar and ground. The marks on the boxcar are
labeled A’ and B’; on the ground, A and B.The events recorded by the observers
are the light signals from the lightning bolts. The two light signals reach observer

O at the same time.”

(a) (b)

Figure 1.9 Two lightning bolts strike the ends of a moving boxcar. (a) The events
appear to be simultaneous to the stationary observer at O, who is midway between A
and B. (b) The events do not appear to be simultaneous to the observer at O', who
claims that the front of the train is sdltréuck before the rear.



Time dilation

- Time dilation reflects the fact that observers in different inertial

frames always measure different time intervals between a pair of

events. -

- Specifically, an observer O at rest will measure 10

: . |
a longer time between a pair of events than an N = =i
V1—(v/c)*]

observer O’ in motion, i.e., moving clocks tick
more slowly than stationary clocks!
- The amount by which the observer at rest

sees the time interval “dilated” with respect

to the measurement by O’ is given by the

= N W SBs U1 OO NN 0 O

factor called Lorentz factor v:

Al
Al =
JI- P/ ¢

=yAl
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Time dilation in practice

Recall our mention of cosmic ray air Top of atmosphere
showers...
Relativistic nuclei strike the atmosphere,

causing a

* Many of these are detected at Earth’s
surface.

However, most of them (like TT’s and U’s)

are very unstable and short-lived.

How do they make it to Earth’s surface?

Extensive air shower development.
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Time dilation in practice

Naively:
* The mean lifetime of the muon (in its rest frame) is 2.2 microseconds.

 Most air shower muons are generated high in the atmosphere (~8 km
altitude).

» If they travel at 99.9% of the speed of light ¢, should they make it to Earth
from that altitude!?

Muon range = (lifetime)x (speed)

=(2.2x107° s)x (0.999¢)
~ 660 m

This suggests that muons should not be able to make it to Earth’s
surface. But we detect them. Where did the calculation go wrong!?
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Time dilation in practice

Accounting for relativity:
* In the lab (the stationary frame), the muon’s lifetime undergoes time
dilation (a muon’s clock ticks slower...).

- Therefore, we have an effective lifetime to deal with:

Muon range = yx (lifetime)x (speed)
(
1

V1-(0.999¢/ ¢)*
14.7km
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Transformation between reference frames

Using the postulates of Special Relativity, we can start to work out
how to transform coordinates between different inertial observers.
* What is a transformation? It’s a mathematical operation that takes

us from one inertial observer’s coordinate system into another’s.

The set of possible transformations between inertial reference

frames are called the Lorentz Transformations.

They form a group (in the mathematical sense of “group theory”).

The possible Lorentz Transformations:
* Translations
* Rotations

 Boosts

17



Translations (fixed displacements)

* In fixed translations, the two observers have different origins, but

don’t move with respect to each other.

* |n this case, the observers’ clocks differ
by a constant bo and their positions

differ by a constant vector b:

—

X=X—b
f=1— b,
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Rotations (fixed)

* In fixed rotations, the two observers
have a common origin and don’t
move with respect to each other.

* In this case, the observers’
coordinates are rotated with respect
to each other.

* The spatial transformation can be
accomplished with a rotation matrix;

measured times are the same: One coordinate system rotated

with respect to another.
X=HR X
=1
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Boosts

In boosts, the two frame axes are aligned,
but the frames move at constant velocity
with respect to each other.

The origins are chosen here to coincide at
time t=0 in both frames.

The fact that the observers’ coordinates
are not fixed relative to each other makes
boosts more complex than translations and
rotations. y

It is in boosts that the constancy of the

Observers’ axes are aligned, but one moves
speed of light plays a big role. at constant velocity vwith respect to the other.

20



Boosts: Galileo vs Lorentz

* Suppose we have two observers O and O’. O is at rest,and O’ moves
along the x direction with constant velocity v.

* According to Galileo, the transformation between the coordinates of O
and O’ is pretty simple.

 According to Lorentz and Einstein, we get complicated expressions with
many factors of c involved: the so-called Lorentz transformations.

If an event occurs at position (x,y,z) and time t for observer O, what are

the space-time coordinates (x,y’,z’) and t' measured by O"?

X= x— vt X=y(x—vi)

y=y Y=y RS S
7=z Z=7 V1- /¢
p_t r=y(t—vx/ ¢*)

Note the Lorentz factor Y in the Lorentz boosts.



Lorentz (length) contraction

- Suppose a moving observer O’ puts a rigid “meter"” stick along the x’ axis:
one end is at X’ =0 and the other at x’=L'=L,.

* Now an observer O at rest measures the length of the stick at time t=0,
when the origins of O and O’ are aligned. What will O measure for the
length?

- Using the first boost equation x’=y(x-vt) at time t=0, it looks like the

lengths are related by:
moving ['= 0% [/ atrest

L=L"y




Lorentz Contraction

- An example of Lorentz contraction in the case of collisions of two

gold nuclei at the RHIC collider at Brookhaven Lab on Long Island:

* In typical collisions (200 GeV), nuclei have a Lorentz factor of O(200).
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Velocity addition

» Finally, let’s briefly derive the rule for addition of relativistic velocities (we

will need to use the boost equations...)

Suppose a particle is moving in the x direction at speed u’ with respect to

observer O’.What is its speed u with respect to O!

Since the particle travels a distance Ax=Y(Ax’+vAt’)—an “inverse”

boost —in time At=Y (At’+(v/c2) AX’), the velocity in frame O is:

Ax  AX+VAl  (AX/AT)+vV
At AT+(v/ C)AX 1+ (V/ C°)(AX/AT)

where v is the relative
velocity of the two
inertial frames.

* Since u=Ax/At and U'=Ax’/At’, we get the addition rule:

U+Vv

U= ; compareto v=U+WY
1+ (' v/ ¢%) P
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Four-vector notation

» This is a way to simplify notation for all we’ve talked about so far.

* Soon after Einstein published his papers on Special Relativity,
Minkowski noticed that regarding t and (X,Y,z) as simply
four coordinates in a 4-D space (“space-time”) really
simplified many calculations.

n this spirit, we can introduce a position-time four-vector xH, where

1=0,1,2,3, as follows:

X’

ct, X=x, X=y, X=2

25



Lorentz boosts in four-vector notation

* In terms of the 4-vector xH, a Lorentz boost along the x! (that is, the

x) direction looks like:

X'=y(X’ = BX)
X'=y(X — X
4 P ), where B=V/C
X2'=X2
X=X

- As an exercise, you can show that the above equations recover the

Lorentz boosts we discussed earlier.

« FYI, this set of equations also has a very nice and useful matrix form.

20



Lorentz boosts in matrix form

* Using 4-vectors, we can write the Lorentz boost transformation as a

matrix equation:

X (v —vB 0 0Y x°)
X' | -8 Y 0 O0fxX
X' |0 0 1 0|
X)) L0 0 0  1Ax,

* Looks very similar to the 3-D rotation!
- Mathematically, boosts and rotations are actually very close
“cousins”.We can understand this connection using the ideas of

group theory.

27



Invariant quantities

* The utility of 4-vectors comes in when we start to talk about
Invariant quantities.

* Definition: a quantity is called invariant if it has the
same value in any inertial system.

* Recall: the laws of physics are always the same in any inertial
coordinate system (this is the definition of an inertial observer).

* Therefore, these laws are invariants, in a sense.
- The identification of invariants in a system is often the best way to

understand its physical behavior.

28



Example of invariant quantity

* Think of a 3-vector (x,y,z). An example of an invariant is its square

magnitude: r’=x2+y2+z2, whose value does not change under

coordinate rotations.

« Consider a rotation about the z-axis:

(X¥) (cosp sing O0Yx)
Y |=|—-sme cosp O]y
\Z) L 0 0 1TAZ)
= X2 e 2

= (Xcos @+ ysing)’ + (—Xsinp+ ycosp)’ + Z°

=(cos’@p+sin’ @)X + )+ 7

)

=
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4-vector scalar product

- The quantity As?, given by:
AS =XX XX XX XX =X %X
=(ct)’ — x
is called the scalar product of xH with itself.
* It has the same value in any coordinate system (just like any scalar).
- This spacetime interval is often called the proper length.
- To denote the scalar product of two arbitrary 4-vectors aH and bH, it

is convenient to drop the Greek index and just write:
a-b=a’t’"—a- b

* In this case, the 4-vectors a and b are distinguished from their spatial 3-
vector components, by the little arrow overbar.
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4-vector scalar product

- Terminology: any arbitrary 4-vector at# can be classified by the sign of

its scalar product aZ:

|. If a2>0, ak is called time-like because the time component dominates

the scalar product.

2. If a2<0, at is called space-like because the spatial components
dominate aZ2.
3. Ifa2=0,atis called light-like or null because, as with photons, the

time and space components of at cancel.
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The light cone, revisited

A set of points all connected to a single
event E by lines moving at the speed of light
is called the light cone.

The set of points inside the light cone are

time-like separated from E.

time

The set of points outside the cone are
space-like separated from E.

Points outside the cone cannot casually
affect (or be affected by) the event E.

» Signal from these points cannot make it

Event E

to the event.

Past and future light cones for an event
E, with z dimension suppressed, and
units defined such that c=1.

32



Why is relativity so prevalent and fundamental in this field?



SR in particle physics

- We will talk about relativistic kinematics - the physics of particle collisions
and decays.

* In the context of what we have discussed so far, we start to think of
particles as moving “observers”, and scientists as stationary observers.

» The reference frame of particles is often called the “particle rest
frame”, while the frame in which the scientist sits at rest, studying the
particle, is called the “lab frame”.

- To begin, let’s define (not derive) the notions of relativistic energy,
momentum, and the mass-energy relation.

+ These should reduce to classical expressions when velocities are very

low (classical limit).

We will be applying the algebra of 4-vectors to particle physics.
34



Relativistic momentum

* The relativistic momentum (a three-vector) of a particle is similar to

the momentum you’re familiar with, except for one of those factors

of y: mv

— M =
=7 J1- 12/ ¢

* The relativistic momentum agrees with the more familiar expression

in the so-called “classical regime” where v is a small fraction of c.

- |n this case:

.1V ~
D= mv{l+ 502+...J~ mv

(Taylor expansion)
35



Relativistic energy

* The relativistic energy (excluding particle interactions) is quite a bit

different from the classical expression:

mc*
N

* When the particle velocity v is much smaller than ¢, we can expand the

E=vymc* =

denominator to get:

+...j= mcz+lm|?+§m£+...
2 8

v 3
+

2¢* 8¢

E= m1:2£1+ -

The second term here corresponds to the classical kinetic energy, while the
leading term is a constant.

This is not a contradiction in the classical limit, because in classical mechanics
we can offset particle energies by arbitrary amounts.

The constant term is called the rest energy of

the particle and it is Einstein’s famous equation: Erest — l776‘2
36




Energy-momentum four-vector

* It is convenient to combine the relativistic energy and momentum into a

single 4-vector called the four-momentum.
E

The four-momentum, denoted pH or just p, is defined by:
The scalar product of the four-momentum with itself gives us an invariant
that depends on the mass of the particle under study.

* Squaring pH yields the famous relativistic energy-momentum relation (also

called the mass-shell formula):

p p—ﬁ—ﬁz me

.................... \ The Lorentz-invariant quantity that

results from squaring
E \/| p‘ 02 + mzc 4-momentum is called the invariant

mass.
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Classical vs. relativistic mass shell

* In classical physics, the mass-shell relation is

quadratic in the momentum:

o _\pi+p’+ )
2m 2m

* This is called the mass-shell formula because

if one plots E vs p in two dimensions, the

function looks like a parabolic shell.

- Jargon: particles that obey the relativistic
mass-shell relation are said to be “on mass p,

shell”:

A point “on the
mass shell”.

E = \/ ‘ ﬂz 6'2 + [772 6'4 Classical mass shell relation for a 2D system.
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Classical vs. relativistic mass shell

* The relativistic mass shell, due to the presence of the rest energy,

looks like a hyperbola.

| Relativistic mass shell
for 1D motion (m+0).

Unlike classical mechanics, zero- / E

mass particles are allowed if they

travel at the speed of light.

* |n the case of zero mass, the mass- /

shell relation reduces to:
Relativistic mass shell for |D

E . motion (m=0) (boundary of
— ‘ p‘ A the light cone).

39



Collisions and kinematics

Why have we introduced energy and momentum?

* These quantities are conserved in any physical process
(true in any inertial frame?!).

» The cleanest application of these conservation laws in particle
physics is to collisions.

 The collisions we will discuss are somewhat idealized; we essentially
treat particles like billiard balls, ignoring external forces like gravity
or electromagnetic interactions.

- |Is this a good approximation? Well, if the collisions occur fast enough,

we can ignore the effects of external interactions (these make the

calculation much harder!).

40



Classical vs. relativistic collisions

* |n classical mechanics, recall the usual conservation laws:
|. Mass is conserved;
2. Momentum is conserved;

3. Kinetic energy may or may not be conserved.

41



Classical vs. relativistic collisions

relativigtic | |
* |n classieal mechanics, recall the usual conservation laws:

|. Massis conserved; Relativistic energy
2. Momentum is conserved; Relativigtic momentum

3. Kinetic energy may or may not be conserved.

Note: conservation of energy and momentum can be
encompassed into conservation of four-momentum.

42



Inelastic collisions

- There is a difference in interpretation between classical and relativistic
inelastic collisions.

* In the classical case, inelastic collisions mean that kinetic energy is
converted into “internal energy” in the system (e.g., heat).

- In special relativity, we say that the kinetic energy goes into rest energy.

» Is there a contradiction!?
* No, because the energy-mass relation E=mc2, tells us that all “internal”
forms of energy are manifested in the rest energy of an object.
* In other words, hot objects weigh more than cold objects. But this is

not a measurable effect even on the atomic scale!

43



Mass-energy equivalence




SR in particle physics

- Consider the decay TT* = Ut VH;

e m e, e, ———————— - - i G g SRR R NN g S UG U g

Before After
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Summary

- Lorentz boosts to and from a moving reference frame:

X=y(x—vi) Xx=y(X+vt)
y=Yy y=1Jy 1
, , Y= 21
7=z z=2 N
r=t-wxic®)  t=y(t+vx/ )
* Relativistic momentum and energy:
D=ymv, relativistic momentum
E=vymc, relativistic energy

E_. =mc, rest energy
[=E-E_, :(y—l)mcz, relativistic kinetic energy
E* = \p|2 c* + mc*, mass-shell relation

46



Schedule

%§

Coocial Relativi

Quantum Mechanics
Experimental Methods

The Standard Model - Overview
The Standard Model - Limitations
Neutrino Theory

NV 00 N o U1 A~ WD =

Neutrino Experiment
|0. LHC and Experiments

| 1. The Higgs Boson and Beyond
|2. Particle Cosmology

47



Particles and VWaves



Topics for Today

- Quantum phenomena:

Quantization: how Nature comes in discrete packets

Particulate waves and wavelike particles %AN TUM
Understanding quantum phenomena in terms of waves. MECHAN[CS

The Schrodinger Equation
* Interpreting quantum mechanics (QM):
The probabilistic interpretation of quantum mechanics
The Uncertainty Principle and the limits of observation.
- Understanding the Uncertainty Principle:
Building up wave packets from sinusoids.

Why the Uncertainty Principle is a natural property of

DAVID J. GRIFFITHS

waves.

Recommended reading
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What is Quantum Mechanics (QM)?

- QM is the study of physics at very small scales - specifically, when the
energies and momenta of a system are of the order of Planck’s

constant:
h = h/2n = 6.6X10-1%eV.s

* On the quantum level, “particles” exhibit a number of non-classical
behaviors:
|. Discretization (quantization) of energy, momentum charge, spin, etc.
Most quantities are multiples of e and/or h.
2. Particles can exhibit wavelike effects: interference, diffraction, ...

3. Systems can exist in a superposition of states.

50



Quantization of electric charge

* Recall:
* J.J.Thomson (1897): electric charge is
corpuscular,“stored” in electrons.

- R.Milikan (1910): electric charge is

quantized, always showing up in integral

multiples of e.
- Milikan’s experiment: measuring the

charge on ionized oil droplets.

R.A. Millikan
Nobelprize.org

51



The oil drop experiment

- The experiment entailed balancing cover
the downward gravitational force = g
oil
with the upward buoyant and |
P 4 several thousand e— Sorey s -{mlcroscope
electric forces on tiny charged volts ' NS >
droplets of oil suspended between AN

uniform electric field

two metal electrodes.

- Since the density of the oil was

known, the droplets’ masses could : !
/

x

————

be determined from their observed : 3

radii.

» Using a known electric field, Milikan 3
and Fletcher could determine the
charge on oil droplets in mechanical

equilibrium.

C{';/v\illikc:m’s setup



The oil drop experiment

* By repeating the experiment for
many droplets, they confirmed that
the charges were all multiples of
some fundamental value.

 They calculated it to be

several thousand _ - =

volts T ( f{

cover

'ﬁ

oil
spray

microscope

—

.

N

uniform electric field

v B i.

P

1.5924(17)x10-'9 C, within 1% of the
currently accepted value of
1.602176487(40)x10-19 C.

» They proposed that this was the

charge of a single electron.

Cc,)glv\illikcm’s setup
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Quantization of energy ke

“ultraviolet

catastrophe"

* Recall:
M. Planck (1900): blackbody radiation

spectrum can be explained if light of

Radiated Intensity

frequency Vv comes in quantized energy

t Curves agree at C T
/very low frequencies ek -1

packets, with energies of hv. —_—
(__Frequency

- A Einstein (1905): photoelectric effect can only be theoretically
understood if light is corpuscular.

* N.Bohr (1913): discrete energy spectrum of the hydrogen atom can be
explained if the electron’s angular momentum about the nucleus is

quantized.

* In an atom, angular momentum mvr always comes in integral multiples
of h = h/2TT.

o4



Quantization of energy i

Toward the
“ultraviolet
catastrophe"
[grv2 | Rayleigh-Jeans Law
- Recall: 7c3
>
& &
- M. Planc =
spectru Planck Law
8“\'2 hy
frequen - T
: \ Electrons buencies © ekT -1
: ! . AR Ejected from
packets, the Surface :
A Frequency
- A. Einstein ( ally
understood
- N.Bohr (IS N o om can be
explained if K=v—¢ileus is

quantized.

* In an atom, angular momentum mvr always comes in integral multiples

of h = h/2TT.
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Quantization of energy

Recall:
M. Plancl

spectru

frequen

packets,

- A. Einstein (
understood
- N.Bohr (IS
explained if
quantized.

* In an atom, angular momentum
of h = h/2TT.

4

Toward the
‘ultraviolet
catastrophe"

Rayleigh-Jeans Law

Planck Law

e at

485

leus is

mvr always comes in integral multiples
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Quantization of spin q
charge
 The particle property called spin, is also quantized in
units of h.
- All particles have spin:it is an inherent property, like e \:*\‘ |
electric charge, or mass. : ‘;‘if—g“}‘%s
- A magnetic phenomenon, spin is very important. A\ %: Wi
* If you understand bar magnets, you (somewhat)

understand spin.

* Spin is closely related to Pauli’s Exclusion Principle
(Spin Statistic Theorem), which relates the change in
sigh of the QM wavefunction when two identical
particles are exchanged in a system (more on this

later...).

S/



How does spin enter the picture?

How do particles get a magnetic moment!?
Enter spin. Imagine an electron as a rotating ball

of radius R, with its charge distributed over the

volume of the sphere. ¢
* The spinning sets up a current loop around the

Angular velocity w.

rotation axis, creating a small magnetic dipole:
like a bar magnet!

* The spinning ball gets a dipole moment:

—_—

. 4 .
in=——naR'pw oc -8
3 Sphere has total charge -4,
spread over the surface
with uniform density -o,.a..

Spin S is a vector that points along the axis of
rotation (by the “right-hand rule”). The moment

M points in the opposite direction.
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Spin-magnetism analogy

- To some extent, all elementary particles behave like tiny bar magnets, as if

they had little N and S magnetic poles.

B il N S Precession longitudinal
/ \

component /&
S S S N By _ . ‘ ﬁé ( ,«».. ,‘jj—'_‘,.
/ ) \ /"/
< traqsverse

~component
X

Iwo bar magnets set side by side will try

to anti-align such that the north and south Similarly, an object with a magnetic
poles “match up.” moment will try to anti-align itself with a
magnetic field.

Jargon: if a particle behaves in this way in a magnetic field, it is said to have a

non-zero magnetic dipole moment U. In a B field, such a particle will feel a

force: E_ V(/_i B)



Quantization of spin

* If an electron is a spinning ball of charge, we
understand how its magnetic moment arises.

* This is still classical physics: the spin axis may point in
any direction. But, Nature is very different!

+ O.Stern and W. Gerlach (1921):

* While measuring Ag atom spins in a B field, they
found that spin always aligns in two opposite
directions,“up” and “down”, relative to the field.

* Moreover, the magnitude of the spin vector is
quantized in units of h.

- All elementary particles behave this way: their spins
are always quantized, and when measured only point

in certain directions (“space quantization”).

60
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Classically, an electron’s spin orientation can take on
a continuum of values, the axis of rotation can point
anywhere it likes.

Image © Hyperphysics

But the classical view is wrong, because measured
spins always seem to line up in certain preferred
directions. This is called a spin-1/2 particle.




Quantization of spin

- O.Stern and W. Gerlach (1921):

Photograx,

plate

Field
Zero field on

Inhomogeneous
magnetic field

Spin can take
only two orientations

pattern = Classical expectation
<> Experimental result After Beiser
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Understanding spin

If elementary particles like the electron are actually little spinning spheres
of charge, why should their spins be quantized in magnitude and direction?
Classically, there is no way to explain this behavior.

n 1925, S. Goudsmidt and G. Uhlenbeck realized that the classical model

just cannot apply: electrons do not spin like tops; magnetic behavior must

oe explained some other way.

Modern view: spin is an intrinsic property of all elementary particles, like
charge or mass.

* It is a completely quantum phenomenon, with no classical analog.
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Quantization summarized

* General rule in QM:

 Measurable quantities tend to come in integral (or half-integral)
multiples of fundamental constants.
* Almost all of the time, Planck’s constant is involved in the quantized
result. It’s truly a universal, fundamental constant of Nature.

- Question: why don't we observe quantization at macroscopic

scales?
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Quantization summarized

General rule in QM:

 Measurable quantities tend to come in integral (or half-integral)
multiples of fundamental constants.

* Almost all of the time, Planck’s constant is involved in the quantized
result. It’s truly a universal, fundamental constant of Nature.

- Question: why don't we observe quantization at macroscopic
scales!?

- Answer: due to the smallness of Planck's constant.

- This is analogous to Special Relativity, where the small size of the

ratio v/c at everyday energy scales prevents us from observing the

consequences of SR in the everyday world.
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More quantum weirdness

Observation tells us that physical quantities are not continuous

down to the smallest scales, but tend to be discrete.

- OK, we can live with that...

- But QM has another surprise: if you look small enough, matter - that
is, “‘particles” - start to exhibit wavelike behavior.

* We have already seen hints of this idea.

* Light can behave like a wave, and it can behave like a particle,

depending on the circumstances...
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More quantum weirdness

- Observation tells us that physical quantities are not continuous
down to the smallest scales, but tend to be discrete.
- OK, we can live with that...

- But QM has another surprise: if you look small enough, matter - that
is, “‘particles” - start to exhibit wavelike behavior.

* We have already seen hints of this idea.
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More quantum weirdness

* L. de Broglie (1924) suggested that the wave-particle behavior of
ight might apply equally well to matter.

* Just as a photon is associated with a light wave, so an electron could

be associated with a matter wave that governs its motion.
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L. de Broglie
Nobelprize.org

The de Broglie hypothesis

- de Broglie’s suggestion was a very bold statement about the
symmetry of Nature.

 Proposal: the wave aspects of matter are related to its particle
aspects in quantitatively the same way that the wave and particle
aspects of light are related.

- Hypothesis: for matter and radiation, the total energy E of a particle
is related to the frequency V of the wave associated with its motion
by:

E=hv
* If E=pc (recall SR), then the momentum p of the particle is related to

the wavelength A of the associated wave by the equation:

p=h/\
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The de Broglie hypothesis

* p = h/A or A=h/p — de Broglie relation

* It holds even for massive particles.

* It predicts the de Broglie wavelength of a matter wave associated

with a material particle of momentum p.

group velocity
—

de Broglie hypothesis: particles are also
associated with waves, which are
extended disturbances in space and time.
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Matter waves and the classical limit

- Question: if the de Broglie hypothesis is correct, why don’t

macroscopic bodies exhibit wavelike behaviors!?
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Matter waves and the classical limit

- Question: if the de Broglie hypothesis is correct, why don’t
macroscopic bodies exhibit wavelike behaviors!?

* Smallness of h!

Out things in pergpective?
* What is your de Broglie wavelength?

* What is the de Broglie wavelength of a
100 eV electron!?
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Testing the wave nature of matter

* Macroscopic particles do not have measurable de Broglie
wavelengths, but electron wavelengths are about the characteristic
size of X-rays.

* So, we have an easy test of the de Broglie hypothesis:

* Check if electrons exhibit wavelike behavior (diffraction,
interference, ...) under the same circumstances that X-rays do.

* First, let’s talk a little bit about X-rays and X-ray diffraction.
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The first medical rontgengram:

X- rays a hand with buckshot, 1896.

Gamma ray X-ray Ultraviolet Visible Infrared Microwave Radio Radiation Type
1072 10710 108 0.5 x10° 10° 107 10° Wavelength / m
10%° 10'® 10 10" 10'2 810 10* Frequency / Hz

7/
Hichaek /.///r/

Lolices i A sp'w e

* W.Rontgen (1895): discovers X-rays, high energy photons with

typical wavelengths near 0.1 nm.
- Compared to visible light (A between 400 and 750 nm), X-rays have
extremely short wavelengths and high penetrating power.

* Early in the 20t century, physicists proved that X-rays are light waves

by observing X-ray diffraction from crystals.
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X-ray crystallography

How it’s done: take X-rays and shoot them

onto a crystal specimen.

- Some of the X-rays will scatter backwards
off the crystal.

- When film is exposed to the backscattered X-
rays, geometric patterns emerge.

* In this image, the dark spots correspond to
regions of high intensity (more scattered X-
rays).

- The geometry of the pattern is characteristic

of the structure of the crystal specimen.

- Different crystals will create different Negative image of an X-ray diffraction

scattering patterns pattern from a beryllium aluminum
silicate crystal. The X-rays seem to

24 scatter only in preferred directions



X-ray diffraction

Crystal surface

What is the process behind X-ray

crystallography!?

Why do X-rays appear to scatter off

crystals in only certain directions!?

» This behavior can only be understood if
X-rays are waves.

The idea: think of the crystal as a set of

semi-reflective planes.

The X-rays reflect from different planes in

the crystal, and then constructively and

. . ...but for certain angles of incidence, the X-rays reflect off lattice
destructively interfere at the film screen. planes such that they travel back to the film screen and
constructively interfere.
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Basic wave concepts

Wavelength is easy to visualize; it is the
distance over which the wave starts to

repeat.
To understand waves in QM, let’s : [ Wevstength —| oataan
. . Amplitude —V
review some basic wave concepts. 7 4SSN NSSSRSRND SN NSO
= frequency
Wavelength [: the repeat distance of a T = Period

wave in space.

Period T: the “repeat distance” of a

For an object executing periodic motion,

like 2 mass on a spring, the period is just
Frequency V: the inverse of the period; the time interval over which the wave

starts to repeat.
v=I/T P

wave in time.

Amplitude A: the wave’s maximum

amplitude

displacement from equilibrium. -

Y]
. . . |- riod
» Classically, this determines a wave’s N T The amplitude A is the
rqaglgbshor:n at maximum displacement
. . UI.I riu Equilibrium from equilibrium, not
lntenSlt)’. postion. : Iilne the total swing.
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Basic concept: interference

Waves can add or cancel, depending on
their relative phase. You can visualize
phase by imagining uniform circular
motion on a unit circle.

Light

Shadow

180"

Circular motion
at constant

speed.

Shadow moves in
simple harmonic motion.

< 180° | Phasels
. the fraction
90 of a cycle
expressed
in degrees.

Time trace
of shadow

position.

7N

Constructive
interference

Destructive
interference

(

In phase

TN

(
)

(

180° out
+ of phase

N

)

* Principle of Superposition: you can add up any number of waves (sinusoids)

to get another wave.
* The resultant wave may be larger or smaller than its components, depending

on their relative phase angles.

« Phases can be understood in terms of motion on the unit circle.

- Hence, waves interfere, canceling each other at certain locations.

* Interference is what gives rise to the light and dark spots in the X-ray

diffraction pattern.
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How X-ray interference works

- Consider two X-ray beams N /\
: In phase + = -
reflecting from two crystal planes a Tehase T N Constructive
\/ interference
distance d >> 0.Inm apart. o~
. Destructi
- The wave reflecting from the lower \/+ 180° out e
) of phase =—
plane travels a distance 2| farther /\\/
than the upper wave.
- If an integral number of wavelengths
. o o ! . v v
nA just fits into the distance 2I, the /Incident P
‘. / wavefront X-rays
two beams will be in phase and will o B = v
constructively interfere. / \ V¥ Sattered
L 2 - A ~ wavefront
* Only certain incident angles lead to ) 8N T e
. ‘\\ ;' \ /' g
constructive interference: ~( 1=dsin6
Atomic plane of crystal;
nA = 2/: stme distance 0 between planes \\\_\\
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. . Diffraction pattern created by
E|eCtI"Ol‘l d |ffraCt|On scattering electrons off a crystal. (This
is a negative image, so the dark spots

are actually regions of constructive

interference.) Electron diffraction is

only possible if electrons are waves.

* Scattering electrons off crystals . .
also creates a diffraction pattern!

* Electron diffraction is only
possible if electrons are waves.

* Hence, electrons (matter
particles) can also behave as

waves.
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Observation of electron diffraction

* Electron diffraction was first observed in a famous 1927 experiment by
Davisson and Germer.
* They fired 54 eV electrons at a nickel target and observed diffraction

peaks consistent with de Broglie’s hypothesis.

Electron
it;' hot hlan?e«%l lo
redease alecirons
+54 \ == Accelerating Theory
p  Mackmis A= =167 Rfor54V
l mv
° .
l Electron Expariment
scattering Pathlength differance
=]

peak at 50° .
, dsing = 2.15sin50 = A=1.65A

for constructive intererancea

Not bad for a
~ three year old
idea!

T'IIL":KeI
crystal
}‘_ d _‘I Nickel latt
1 924 1 927 1 929 spaci:gedi l;’C?S A
de Broglie's Davisson- Nobel Prize
hypothesis Germer for

experimant de Broglie




Understanding matter waves

* Let’s think a little more about de Broglie waves.

* In classical physics, energy is transported either by waves or by

particles.
* Particle: a definite, localized bundle of energy and momentum, like

a bullet that transfers energy from gun to target.
* Wave: a periodic disturbance spread over space and time, like
water waves carrying energy on the surface of the ocean.

* In quantum mechanics, the same entity can be described by both a

wave and a particle model:
* Electrons scatter like localized particles, but they can also diffract

like extended waves.
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The wave function

Okay, particles <> waves.

How do we represent wave-particles mathematically?
Classically: a particle can be represented solely by its position x and momentum
p. If it is acted on by an external force, we can find x and p at any time by

solving a differential equation like:

2
md 2X: dp: F (Newton's 2ndLaw)
at  adt
- A wave is an extended object, so we can’t represent it by the pair of numbers

(X,p)-
Instead, for a wave moving at velocity c=Av, we define a “wave function” P (x,t)

that describes the wave’s extended motion in time and space.

- To find YP(x,t) at any position and time, we solve a differential equation like:
oy 1 0%
ox° ¢ oF

Something similar
applies to particles...

(waveequation)
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Wave equation for quantum waves

- Time evolution of waves can usually be found by solving a

wave equation like:

82_()[/_ 1 o'y ' E. Schroding
oX° ¢* oF N;,bi|£§z'erf§f§

* E.Schrodinger (1926) found that quantum particles moving ina 1D
potential V(x) obey the partial differential equation:

i YD =(— o, V()o}y(x,o

ol 2mox°

* Notice anything?
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Wave equation for quantum waves

- Time evolution of waves can usually be found by solving a

wave equation like:

82_()[/_ 1 o'y E. Schroding
oX° ¢* oF N;,bi|£§z'erf§f§

* E.Schrodinger (1926) found that quantum particles moving ina 1D
potential V(x) obey the partial differential equation:

Loy [ h* o
ey _( 2max2+v(x)}y(x’t)

v This expression involves h, the usual QM parameter.

v It also involves the number i, which means that the waves YP(x,t) are complex.
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The de Broglie wave

» Particles can be described by de Broglie waves of wavelength A=h/p.
* For a particle moving in the x direction with momentum p=h/\ and
energy E=hv, the wave function can be written as a simple sinusoid

of amplitude A:

Y(X,[)= Asin 272'(%—1/1‘)

- The propagation velocity c of this wave is:

C=Av
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Quantum waves summarized

- An elementary particle like a photon can act like a particle

(Compton effect, photoelectric

effect) or a wave (diffraction),

depending on the type of experiment / observation.

- If it’s acting like a particle, the p

position and momentum x and

hoton can be described by its

. If it’s acting like a wave, we must

describe the photon with a wave function P (x,t).

- Two waves can always superpose to form a third: P = Y + Y.

- This is what gives rise to interference effects like diffraction.

* The wave function for a moving particle (a traveling wave) has a

simple sinusoidal form.

* But how do we interpret Y(x,t) physically?
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Interpretation of the wave function

* We have seen that any wave can be described by a wave function

P (x,t).

* For any wave, we define the wave’s intensity | to be:

[=lpx D" = [ dx y(x 'YX b

where the asterisk signifies complex conjugation. Note that for a

plane wave this is the square of A (a constant):

/=0 =|A°

- Let’s use the concept of intensity and a simple thought experiment
to get some intuition about the physical meaning of the de Broglie

wave function.
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The double slit experiment

- Experiment: a device sprays an electron beam at a wall with two small

holes in it. The size of the holes is close to the electrons’ wavelength Ads.

- Behind the wall is a screen with an y X l//
electron detector. v Movable 1/

» As electrons reach the screen, the : detector S?
detector counts up how many e ¥ Slit 1 4
electrons strike each point on the %{%& - @‘ - T T ?
wall. Electron gun Y p o2 4

* Using the data, we plot the intensity ; ;
|(x): the number of electrons : ¢
arriving per second at position x. Wall Backstop
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The double slit experiment

* The classical result:

Movable
detector

=)

Slit 1 open /1 +2

Electron gun

h

A\
\\\‘
b
o Dy, BR0D. ) . C? V" R, T %
[
l
|
f
DR R N AR RIONPN R

Slit 2 open

Wall Backstop lits 1 and 2 open

- If electrons are classical particles, we expect the intensity in front of each
slit to look like a bell curve, peaked directly in front of each slit opening.
* When both slits are open, the total intensity l|+2 on the screen should

just be the sum of the intensities || and |, when only one or the other slit

IS open.
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The double slit experiment

* In practice:

4 }
{ ¥4
/ /|
A Movable /
r detector S /
- : Slit 1 J / Slit 1 open /1 +2
M o2 /1
S - | -
N Sihit2 L/
-
Electrongun ™ ) 4
1 %y
r’ / Slit 2 open
/ /]
. /
Wall Backstop Slits 1 and 2 open

When we perform the real experiment, a strange thing happens.

When only one slit is open, we get the expected intensity distributions.

But when both slits are open, a wavelike diffraction pattern appears.

Apparently, the electrons are acting like waves in this experiment.
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Wave function interpretation

%
r %
/ /|
2 Movable /
r detector 5 /
L7 Slit1 |/ hi
et >-
Nt Shit2 74
-
Electrongun ™ ) L/
1 £y
4 o]
/ %
y /
Wall Backstop Slits 1 and 2 open

- In terms of waves, the wave function of an electron at the screen when only slit
| is open is Y, and when only slit 2 is open it’s V.
* Hence, the intensity when only one slit is open is either [\=|Y|? or ,=|P2|2.
*  With both slits open, the intensity at the screen is ||+2=|P1+Y2|% not just |+],!
- When we add the wave functions, we get constructive and destructive

interference; this is what creates the diffraction pattern.
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Wave function and probability

* If electrons create a diffraction pattern, they (a) After 28 electrons
must be waves. But when they hit the screen,
they are detected as particles.

How do we interpret this!?

- M. Born: Intensity |(x)=|W(x,t)|2 actually refers (b) Atter 1000 slectrons

T

(c) After 10,000 electrons

l(x)=|WP(x,t)|? the probability of finding a particle
at a certain location at a given time. -lll

The probabilistic interpretation gives physical

to probability a given electron hits the

screen at position X.

- In QM, we don’t specify the exact location of an

electron at a given time, but instead state by

meaning to Y(x,t): it is the “probabilit Diffraction pattern from an actual

electron double slit experiment.
Notice how the interference pattern
builds particle by particle.

amplitude” of finding a particle at x at time t.
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Is there a contradiction?

* We now understand the wave function in terms of the probability of a
particle being someplace at some time.

* However, there is another problem to think about.

- Since the electrons diffract, they show wavelike behavior; but when they
hit the screen, they interact like particles. And if they are particles, then
shouldn't they only go through one slit at a time?

- If this is the case, how can an electron’s wave undergo double slit

interference when the electron only goes through one slit?

- Seems impossible...
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Is there a contradiction?

* We now understand the wave function in terms of the probability of a
particle being someplace at some time.

* However, there is another problem to think about.

- Since the electrons diffract, they show wavelike behavior; but when they
hit the screen, they interact like particles. And if they are particles, then
shouldn't they only go through one slit at a time?

- If this is the case, how can an electron’s wave undergo double slit
interference when the electron only goes through one slit?

- Seems impossible...

» To test what’s going on, suppose we slow down the electron gun so that
only one electron at a time hits the wall.

* We then insert a device over each slit that tells us if the electron

definitely went through one slit or the other.
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Destroying the interference pattern

Movable
detector

. TN, R

A
A
/I
7
|
2
N
> D TR I . | @ =
I
|
I
{
RN N O KON R

/

Slit 1 open

Electron gun

Electron
detectors

L

Slit 2 open

Wall Backstop Slits 1 and 2 op

* We add electron detectors that shine light across each slit.

* When an electron passes through one of the slits, it breaks the beam,
allowing us to see whether it traveled through slit | or slit 2 on its way to
the backstop.

- Result: if we try to detect the electrons at one of the two slits in this way,
the interference pattern is destroyed! In fact, the pattern now looks like the

one expected for classical particles. o



Complementarity

* Why did the interference pattern disappear?

- Apparently, when we used the light beam to localize the electron at
one slit, we destroyed something in the wave function JP(x,t), that
contributes to interference.

* Principle of Complementarity (N. Bohr): if a measurement proves
the wave character of radiation or matter, it is impossible to prove
the particle character in the same measurement, and vice-versa.

+ The link between the wave and particle models is provided by the
probability interpretation of P(x,t), in which an entity’s wave gives

the probability of finding its particle at some position.
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Complementarity

* Why did the
- Apparently, w
one slit, we d
contributes t
* Principle of C
the wave cha
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the probabilit

“You changed the outcome by
measuring it
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Schrodinger’s cat
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Werner
Heisenberg,
Nobelprize.org

The Uncertainty Principle

* There seems to be some fundamental constraint on QM

that prevents matter from acting wave-like and particle-like

SN

* Moreover, it appears that our measurements can directly affect

simultaneously.

whether we observe particle or wavelike behavior.
* These effects are encapsulated in the Uncertainty Principle.

* Heisenberg: quantum observations are fundamentally limited in

accuracy.
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The Uncertainty Principle (1)

- According to classical physics, we can (at the same instant) measure
the position x and momentum pyx of a particle to infinite accuracy if
we like.We're only limited by our equipment.

- However, Heisenberg’s uncertainty principle states that experiment
cannot simultaneously determine the exact values of x and px.

- Quantitatively, the principle states that if we know a particle’s

momentum px to an accuracy Apx, and its position x to within some
Ax, the precision of our measurement is inherently limited such

that:

ADAX>1/2
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Using the Uncertainty Principle

* Does the Uncertainty Principle (UP) mean that we can’t measure position
or momentum to arbitrary accuracy!?

* No. The restriction is not on the accuracy to which x and px can be
measured, but rather on the product ApxAx in a simultaneous
measurement of both.

* The UP implies that the more accurately we know one variable, the less

we know the other. If we could measure a particle’s px to infinite

precision, so that Apx=0, then the uncertainty principle states:

AXZM:w:oo

Ap, O
* In other words, after our measurement of the particle’s direction

(momentum), we lose all information about its position!
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The Uncertainty Principle (2)

* The Uncertainty Principle has a second part
related to measurements of energy E and the
time t needed for the measurements. It states

that;

AEAEI=1h/2
- Example: estimate the mass of virtual particles
confined to the nucleus (see Lecture 2 on
estimating Yukawa’s meson mass).
* Example: At could be the time during which a
photon of energy spread AE is emitted from an

atom.

» This effect causes spectral lines in excited

atoms to have a finite uncertainty AA (“natural

width”) in their wavelengths. o
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Atomic spectral lines, the result

of transitions that take a finite
time, are not thin “delta
function” spikes, but actually

have a natural width due to the

Uncertainty Principle.




Uncertainty and the double slit

- Now that we know the UP. we can understand

why we can’t “beat” the double slit experiment

and simultaneously observe wave and particle
behavior.

- Basically, our electron detector Compton scatters
light off of incoming electrons.

* When an electron uses one of the slits, we
observe the scattered photon and know that an
electron went through that slit.

- Unfortunately, when this happens, the photon
transfers some of its momentum to the electron,

changing its momentum.
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Uncertainty and the double slit

- If we want to know the slit used, the photon’s wavelength must be smaller
than the spacing between the two slits.

* Hence, the photon has to have a large momentum (remember, A=h/p).

- As a result, a lot of momentum gets transferred to the electron - enough

to effectively destroy the diffraction pattern.

If the wavelength of the scattering
photon is small enough to pinpoint
the electron at one of the slits, the
resulting momentum transfer is large
enough to “push” the electron out
of the interference minima and
maxima. The diffraction pattern is
destroyed.

Single slit
envelope




Uncertainty and the double slit

- If we try to pinpoint the electron at one of the slits, we change its

motion, and the interference pattern vanishes.

- Can you think of a way to get around this problem?
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Uncertainty and the double slit

- If we try to pinpoint the electron at one of the slits, we change its

motion, and the interference pattern vanishes.

- Can you think of a way to get around this problem?

* We could use lower energy photons...

* It turns out, that just when the photon momentum gets low enough
that electron diffraction reappears, the photon wavelength becomes
larger than the separation between the two slits (see Feynman
Lectures on Physics,Vol. 3).

» This means we can no longer tell which slit the electron went

through!
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There is no way to beat the Uncertainty Principle...

SCHRODINGERS CAT IS
DEPRESSED

NO ONE ¢ AME
To MY BURTH DAY

PRRTY / FUNERAL .




Why the Uncertainty Principle

- Let’s review what we have said so far about matter waves and quantum
mechanics.

- Elementary particles have associated matter waves Y(x,t). The intensity of
the wave, |(x)=|D(x,t)|? gives the probability of finding the particle at
position X at time t.

- However, QM places a firm constraint on the simultaneous

measurements we can make of a particle’s position and momentum:
ApxAx=h/2.
- This last concept, the Uncertainty Principle, probably seems very

mysterious. However, it turns out that it is just a natural consequence of

the wave nature of matter, for all waves obey an Uncertainty Principle!

« Let’s take a look...
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Probabilities and waves, again

- Consider a particle with de Broglie wavelength A.

- Defining the wave number k = 2TT/A and the angular frequency
w= 2T11V, the wave function for such a particle could be (conveniently)
written:

w(x, )= Asin(hAx— wt)

- If the wavelength has a definite value A there is no uncertainty AA, and

hence p=h/A is also definite.
* Such a wave is a sinusoid that extends over all values of x with
constant amplitude.
- If this is the case, then the probability of finding the particle should be
equally likely for any x; in other words, the location of the particle is
totally unknown. Of course, this should happen, according to the

Uncertainty Principle. 105



Wave functions should be finite

- If a wavefunction is infinite in extent, like ) =Asin2TT(x/A-Vt), the
probability interpretation suggests that the particle could be anywhere:
Ax=00,

- If we want particles to be localized to some smaller Ax, we need one
whose amplitude varies with x and t, so that it vanishes for most values of

X. But how do we create a function like this?

Particle could be anywhere! Particle localized here!

4

Left: a wave function with constant amplitude means that its corresponding particle is equally likely to be at any value of X.
Right: a finite wave function, or “wave packet,” corresponds to a locaiizexl particle with AXco.




Building wave packets

* In order to get localized particles, their corresponding wave

functions need to go to zero as x—*00. Such a wave function is

called a wave packet.

- It turns out to be rather easy to generate wave packets: all we have

to do is superimpose, or add up, several sinusoids of different

wavelengths or frequencies.

* Recall the Principle of Superposition: any wave P can be built up by
adding two or more other waves.

- If we pick the right combination of sinusoids, they will cancel at

every x other than some finite interval (Fourier Theorem).
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Superposition example: beats

* You may already know that adding two sine waves of slightly different
wavelengths causes the phenomenon of beats (see below).

* A typical example: using a tuning fork to tune a piano string. If you
hear beats when you strike the string and the tuning fork

simultaneously, you know that the string is slightly out of tune.

The sum of two sine waves of slightly

“The bet requency i relaed woche | .mm{h ,l“““ll MHIIH \

difference between the wavelengths
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Superimposing more sinusoids

* Now, let’s sum seven sinusoidal waves of the form:

U= kak ~ ZI/(S__*;:;,, Ay cos(kX)

where k=2TT/\ and As= A5=1/4,A10=A14=1/3,A1=A13=1/2,and A|=1.

* We get a function that is starting to look like a wave packet; however, as

you can see, it’s still periodic, although in a more complicated

way than usual: ” \
periodic function. This is an example of ~NAA ﬁ
AAVA'AY

Summing up sinusoids to get another

AA A AVA A A fa)
Fourier’s Theorem: any periodic J v V VoV U vV

function may be generated by summing
up sines and cosines. “ % U
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The continuum limit

* So, evaluating a sum of sinusoids like:

Y= Zk A, cos(AX)

where k is an integer that runs between k| and k, we can reproduce any

periodic function.
* If we let k run over all values between k| and k; — that is, we make it a

continuous variable —then we can finally reproduce a finite wave packet.

By summing over all values of k in an interval Dk= k,-k,, we

are essentially evaluating the integral n

/(

y =" dk Ak)cos(kx)

1
In such a “continuous sum”, the component sinusoids are A N
all in phase near x=0. Away from this point, in either Q \
direction, the components begin to get out of phase with ]| v
each other. If we go far enough out, the phases of the \‘ ~
infinite number of components become totally random, and ! Phases oF component
cancel out phases of component sinusoids completely. , , sinusoids completely

cancel out here.




Connection to uncertainty

* So, we can sum up sinusoids to get wave packets.

* What does this actually mean?

* Intuition: we want a wave function that is non-zero only over some

finite interval Ax.

* To build such a function, we start adding sinusoids whose inverse
wavelengths, k=2TT/A, take on values in some finite interval Ak.
- Here’s the point: as we make the interval Ak bigger, the width of the

wave packet Ax gets smaller. This sounds like the Uncertainty

Principle!
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Wave-related uncertainties

- As we sum over sinusoids, making the range of k values Ak larger, we
decrease the width of the resulting function.

* In fact, there is a fundamental limit here that looks just like the
position-momentum uncertainty relation.

- For any wave, the minimum width Ax of a wave packet composed

from sinusoids with range Ak is Ax=1/(2Ak), or:
AXANK=1/2

 There is a similar relation between time and frequency:
ANw=1/2
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Connection to QM

»If k=2TT/A, and A=h/p, then the uncertainty relation for waves in general

tells us:
AXANK>1/2
— Ax 2T — 2aax 2P
AL h

AXAP = h/dn=h/2

* We recover the Heisenberg uncertainty relation!

> By a similar argument, we can show that the frequency-time uncertainty
relation for waves implies the energy-time uncertainty of quantum

mechanics.

* Hence, there is nothing really mysterious about the Uncertainty Principle;

if you know anything about waves, you see that it arises rather naturally.
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Summary

* Quantum mechanics is the physics of small objects.
- lts typical energy scale is given by Planck’s constant.

* In QM, variables like position, momentum, energy, etc. tend to take
on discrete values (often proportional to h).

- Matter and radiation can have both particle and wavelike properties,
depending on the type of observation.

- But by the Uncertainty Principle, objects can never be wavelike or
particle-like simultaneously.

* Moreover, it is the act of observation that determines whether

matter behaves like a wave or a particle.
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That’s all for this week...

- Next week: Experimental methods
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Bonus material
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