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Attendance

Up to four absences 
Send email notifications of all absences to 
shpattendance@columbia.edu.

Please, no cell phones

Please, ask questions!

Lecture materials
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram

Course Policies

mailto:shpattendance@columbia.edu
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Schedule

1. Introduction (Inês)

2. History of Particle Physics (José)

3. Special Relativity (José)

4. Quantum Mechanics (Inês)

5. Experimental Methods (Cris)

6. The Standard Model – Overview (Cris)

7. The Standard Model – Limitations (Cris)

8. Neutrinos – part I (José)

9. Neutrinos – part II (José)

10. LHC and Experiments (Inês)

11. The Higgs Boson and Beyond (Inês)

12. Particle Cosmology (Cris)
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3 evidences for 3 neutrinos



5

3 neutrinos: 3 charged leptons

• Neutrinos are the only neutral 

elementary fermions → only weak 

interaction.

• Weak interaction only couples to 

left-handed neutrinos or right-

handed antineutrinos.

• The neutrino flavor is assigned 

according to the charged lepton 

they accompany in the charged-

current weak interaction (mediated 

by the W bosons).

• 3 charged leptons → 3 neutrinos.
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3 neutrinos: the Z boson width

• Unstable particles have an intrinsic uncertainty 
(width) on their mass (Heisenberg uncertainty 
principle):

• This width is proportional to the number of 
disintegration modes and their frequency.

• The width of the Z boson  is ~ 2.5 GeV and ~ 
20% of the times the Z decays into neutrinos 
(invisible width).

• The 4 detectors of LEP (predecessor of the 
LHC at CERN) measured this width, which is 
related to the number of neutrinos*. 

N = 2.9840 ± 0.0082.

(*) Only possibilities left:

Very heavy neutrinos ( > mZ/2 ≈ 45 GeV).

Neutrinos which do not couple to the Z boson: 
sterile neutrinos...

Phys. Rept. 427 (2006) 257-454
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3 neutrinos: mass hierarchy
● 2 squared-mass differences → 3 neutrinos.

Normal Inverted

PMNS matrix: U

(
νe

νμ

ντ
)=(

1
c23 s23

−s23 c23
)(

c13 s13 e
−iδ

1
−s13 e

iδ c13
)(

c12 s12

−s12 c12

1
)(

ν1

ν2

ν3
)

c ij=cosθij , sij=sin θij

→ m
1

→ m
2

→ m
3
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End of story?
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LSND anomaly

PRD 64, 112007

μ+ decay-at-rest experiment.
Very low  e  contamination.
Liquid scintillator detector.
Low background: inverse β-decay 
detection:

PRD 64, 112007

Excess of 87.9 ± 22.4 ± 6.0 events.
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LSND anomaly
Oscillation probability: (0.264 ± 0.067 ± 0.045)%

Cannot be explained 
with just 3 neutrinos!

Difference between squared 
masses 3 and 2, 1

Difference between 
squared masses 2 and 1
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LSND anomaly

A big portion of the allowed 
region is excluded by the 
lack of oscillation signal in 
other experiments, but it 
cannot be ruled out 
completely
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MiniBooNE experiment

● Different beam: mostly pion decay-in-flight experiment.

● Different detector: Cherenkov detector.

● Different energy and baseline, but same L/E: explore the same oscillation region.
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MiniBooNE anomaly
PRL 110, 161801

2.8σ excess
Compatible with 
LSND

3.4σ excess
Worse compatibility with LSND
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Reactor anomaly

PRD 83, 
073006

● After re-calculation of the predicted reactor flux, all past short-baseline reactor 
experiments observe a deficit of electron antineutrinos.

● Can be interpreted as the result of neutrino oscillation driven by a Δm2  1 eV≳ 2 
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Reactor anomaly

PRD 83, 
073006

PRD 83, 
073006
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Reactor anomaly: spectrum distortion in 3 
experiments Double Chooz (JHEP01 (2016) 163)

RENO (arXiv:1511.05849 [hep-ex])

Daya Bay (PRL 116, 061801)

Alternative: predicted reactor flux is wrong.
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Gallium anomaly

• RGa = 0.86 ± 0.05

• Taking into account the uncertainty in 
the cross-section and the transition to 
the two excited states of 71Ge (PRC 
(2011) 065504):

 RGa = 0.76+0.09-0.08

● Can be interpreted as the result of 
neutrino oscillation driven by a Δm2  ≳
1 eV2 

• Radioactive sources used to calibrate 
gallium-based solar experiments:
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Sterile neutrino models

3 +1

● The sterile neutrino gives the high Δm2 

● Cannot explain differences between neutrinos/antineutrinos 
in MiniBooNE.

● Cannot explain the non-disappearance of the muon flavor

3 + 2

● The two sterile neutrinos give the high Δm2

● Incorporates CP violation: neutrinos and antineutrinos 
oscillate differently.

● The non-disappearance of the muon flavor still 
unexplained. 

3 + 3 does not improve the situation.
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The Short Baseline Neutrino Program at Fermilab
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c

Bubble chamber: Gargamelle (1970 - 1979)
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Discovery of neutral currents (1973)
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Animation by Georgia Karagiorgi

Liquid argon time projection chamber
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Animation by Georgia Karagiorgi
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Animation by Georgia Karagiorgi
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Animation by Georgia Karagiorgi
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Animation by Georgia Karagiorgi
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Animation by Georgia Karagiorgi
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Animation by Georgia Karagiorgi
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Animation by Georgia Karagiorgi
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Animation by Georgia Karagiorgi
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Animation by Georgia Karagiorgi
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Animation by Georgia Karagiorgi
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Animation by Georgia Karagiorgi
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Animation by Georgia Karagiorgi
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A real neutrino candidate in a LArTPC

Wire

T
im

e
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Neutrino candidate in LArTPC
Collection plane

● The 3D view of the event is 
projected onto three planes.

Induction plane 1

Induction plane 2
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LArTPC
Why liquid argon?

● It is dense (1.4 g/cm3): more targets for neutrinos per volume.
● It is relatively cheap.
● It can be purified (electronegative elements -oxygen- capture electrons, 

nitrogen quenches scintillation light): detectors can be bigger.
● Bright scintillator (40000 photons/MeV). Transparent to its own light.

Why time projection chamber?
● Modern bubble chamber: very good granularity thanks to a small wire pitch but 

with automated readout and 3D reconstruction.
● Number of readout channels scales with detector length: less electronics 

needed.
● Several ways to estimate particle energy: ionization, range... They can be used 

to identify the particle.



39

Slide by Anne Schukraft
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The short-baseline program at Fermilab
40

112 ton active mass89 ton active mass476 ton active mass
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The short-baseline program at Fermilab

112 ton active mass89 ton active mass476 ton active mass



42

Sensitivity: 
electron neutrino appearance
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Electron vs. gamma discrimination

Slide by Anne Schukraft
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Sensitivity: 
muon neutrino disappearance
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Cross-section program
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Slide by Anne Schukraft
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Slide by Anne Schukraft
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Measurement of neutrino mass
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Lower limits
● If we take the lightest neutrino mass to 

be 0, we can derive lower limits for the 
other mass eigenstates.

● For normal hierarchy:

● For inverted hierarchy:
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Kinematic limits
● Example: tritium decay

Q value: 18.6 keV; half-life: 12.3 y

● The masses of 3H, 3He and the electron 
are known precisely. Using 
conservation of energy and 
momentum, the mass of the 
antineutrino can be inferred.

● Kurie function:

By Zykure - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=13493000
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KATRIN experiment

Sensitivity of 0.2 eV (90% C.L.)
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Other kinematic limits
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Neutrinoless double beta-decay
● Neutrinos might be Majorana fermions. 

“They are their own antiparticle”.

● Majorana mass does not require left 
and right-handed states (as the Higgs-
based one does, a.k.a. as Dirac mass).

● The Majorana nature of neutrinos can 
be tested by looking for neutrinoless 
double beta-decay.

Allowed by 
Standard Model

Physics beyond 
Standard Model
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Many experiments...

… with different isotopes.

● GERDA, MAJORANA: germanium solid-state detectors enriched with 76Ge.

● CUORE: bolometer with 130Te crystals.

● SNO+: 130Te dissolved in liquid scintillator in the SNO detector.

● EXO: TPC with liquid 136Xe.

● NEXT: TPC with high-pressure gaseous 136Xe. 

● KamLAND-Zen: a balloon filled with liquid scintillator doped with 136Xe in the 
KamLAND detector.

● SuperNEMO: multiple isotopes in a calo-tracker detector.

NO SIGNAL* YET
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Seesaw mechanism
● Neutrinos can have both Dirac and 

Majorana masses.

● The active neutrinos we know 
seem to be so light because they 
would be being “lifted up” by heavy 
sterile neutrinos.

– The light neutrinos would be 
mostly left-handed.

– The heavy neutrinos would be 
mostly right handed, so their 
interactions are suppressed.
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Cosmology bound
● The masses of the neutrinos have 

an effect on cosmology 
observavbles:

– Cosmic microwave background.

– Large-scale structure of the 
Universe.

– Element abundances from Big 
Bang Nucleosynthesis.

● From Cosmology, the sum of the 
masses of the neutrinos is < 0.2 eV.

– Model dependent fit.

– Depends on datasets used.

● Cosmological data is also sensitive 
to the number of “neutrinos”.

– Neff = 3.046
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