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Course policies

Classes from 10:00 AM to 12:30 PM (10 min break at ~ 11:10 AM).

Attendance record counts.

 Up to four absences

Lateness or leaving early counts as half-absence

– Send email notifications of all absences to shpattendance@columbia.edu

Please, no cell phones during class

Please, ask questions!

Lecture materials + Research Opportunities + Resources to become a particle
physicist

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram
mailto:shpattendance@columbia.edu


Schedule

Month Day Lecture Teacher

September 22 Introduction Yeon-jae

29 History of Particle Physics Yeon-jae

October 6 Special Relativity Edward

13 Quantum Mechanics Edward

20 Experimental Methods Edward

27 The Standard Model - Overview Yeon-jae

November 3 The Standard Model - Limitations Yeon-jae

10 Neutrino Theory Edward

17 Neutrino Experiment Edward

24 No classes, SHP break

December 1 LHC and Experiments Yeon-jae

8 The Higgs Boson and Beyond Yeon-jae

15 Particle Cosmology Edward
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Neutrinos in the Standard Model

What is special about neutrinos
in the Standard Model?



Neutrinos in the Standard Model
●
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Only weak interaction.

Only left-handed neutrinos (and right-
handed antineutrinos) in the Standard
Model.

● Initially implemented as massless particles.

Neutrino oscillations show neutrinos
have mass!

● Why neutrino masses are so different from
the other fermions?

Are neutrinos acquiring mass through
the same mechanism (Higgs) or from
something else?



Neutrino oscillations (two-neutrino example)

● Two-flavor approximation:

Transition probability (derivation in blackboard):

Survival probability:

● Neutrino oscillation implies

neutrinos are massive and

non-degenerated.

Controlled by

the experiment

Flavor eigenstates Mass eigenstates
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● Consequence of neutrino mixing (quantum superposition, as in Schrödinger's cat):
the neutrinos that interact are not the same kind as the neutrinos that propagate.

Mixing angle



3 neutrino mixing

• Flavor eigenstates (e, μ, τ) ≠ mass eigenstates (1, 2, 3).

• Related by Pontecorvo-Maki-Nakagawa-Sakata mixing

matrix: 3 neutrinos → 3 angles (θ12, θ23, θ13) + 1 CP-violating

phase (δ). PMNS matrix: U

νe

νμ

ντ

=

1

c23 s23

−s23 c23

−iδc13 s13 e

1
iδ−s13e c

13

c12 s12

-s12 c12

1

ν1

ν2 

ν3 → m
3

cij=cosθij, sij=sinθij

Atmospheric &
Long-baseline accelerator

experiments

Solar &
KamLAND

experiments

• CP-violating phase changes sign for antineutrinos: a source of matter-

antimatter different behavior!

CP violation only possible if all three angles are not zero → need to

measure them all!

•

Reactor & Long-baseline
accelerator experiments

→ m
1

→ m2
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Measurement of θ12 and Δm2
21



Solar experiments
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Solar neutrinos: pp chain
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● pp chain produces 98.4% of Sun's fusion energy. It also produces electron
neutrinos.



Solar neutrinos: CNO cycle

● CNO cycle produces 1.6% of Sun's fusion energy. It also produces electron
neutrinos.
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Solar neutrinos: pp chain and CNO cycle 

Illustrations
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Solar neutrinos: energy spectrum
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Homestake experiment (1970 - 1994)

1966
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Homestake experiment

● Detection of solar neutrinos using
the reaction:

●

Radiochemical detector.

Ratio of observed to predicted:
●

● Missing neutrinos!
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• In the late 1960s Ray Davis

and John Bahcall set up an

experiment to try to detect

these solar neutrinos.



Kamiokande (1983 - 1996)
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Kamiokande

● Detection of solar neutrinos using
the reaction:

●

Water Cherenkov detector.

Ratio of observed to predicted:
●

● Missing neutrinos again!

17



Super-Kamiokande (since 1996)
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Super-Kamiokande

● Detection of solar neutrinos using
the reaction:

●

Water Cherenkov detector.

Ratio of observed to predicted:
●

● Improved result over Kamiokande,
neutrinos still missing!
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Super-Kamiokande
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Super-Kamiokande

● NEUTRINOGRAPHY of the Sun. 500 days exposure!
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SNO (1999 - 2006)
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SNO

● Detection of solar neutrinos using
the reactions:

●

Heavy Water Cherenkov detector.

Ratio of observed to predicted:
●
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SNO
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• The SNO results (along with Super-K for atmospheric neutrinos) 

led to a Nobel prize in 2015.



Additional material: 

Reactor Experiments



KamLAND (2002 - 2011)
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26

27
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KamLAND

● Detection of reactor neutrinos using the inverse beta-decay reaction:

● Liquid scintillator detector.
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Solar + KamLAND results
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Measurement of θ23 and Δm2
atm



NEUTRINOS FROM THE ATMOSPHERE

• The Earth is constantly being

bombarded by cosmic rays (mostly

protons) with astrophysical origin.

• These interact strongly with nuclei in

the atmosphere, producing showers

of hadrons.

• Unstable hadrons eventually decay

to the lightest meson, π, which

decays weakly, producing neutrinos!
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ATMOSPHERIC NEUTRINO OSCILLATIONS

• Naïvely expect 2-to-1 ratio of

muon to electron neutrinos.

• However, neutrinos produced on the

“far” side of the earth travel 

thousands of kilometres before they

reach a detector.

• So, they oscillate!

• Comparing the number of neutrinos

hitting the detector from the “top”

(short L) to those coming from the

“bottom” (long L) gives a direct 

measurement of atmospheric

neutrino oscillations.
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SUPER-KAMIOKANDE

• The Super-Kamiokande experiment

was designed to unambiguously

observe oscillations in atmospheric

neutrinos.

• Following hints from its predecessor,

Kamiokande.

• A tank containing 50 kilo-tons of

ultra-pure water is instrumented

with 11000 photo sensors to detect

Cherenkov radiation emitted by

relativistic charged particles.

• Excellent particle identification and

directionality.

• Crucial for oscillation measurement.
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Super-Kamiokande results
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SUPER-K FIRST RESULTS

• Super-Kamiokande announced

its discovery of oscillations in

atmospheric neutrinos in 1998.

• A clear deficit of “up-going” 

muon neutrinos was observed in

the data.

• Muon neutrinos are oscillating

into tau neutrinos, which are not

detected.

• Effect not seen in electron

neutrinos.

• Muon neutrino to electron

neutrino oscillations are sub-

dominant at this L/E.

2015
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IceCube
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ICECUBE ATMOSPHERIC NEUTRINOS
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• Icecube sees atmospheric

neutrino oscillations

consistent with the Super-

K results.

• Note Δm2 ~ 10-3, 100 times

larger than solar mass splitting!

• Also, the mixing angle is very

large – it looks like mixing is

maximal or close…
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NEUTRINO BEAMS

• So far, looked at experiments that use pre-existing neutrino sources.

• Either natural: Sun, cosmic rays impinging on the atmosphere.

• Or artificial: commercial nuclear reactors – electricity is paid for, but neutrinos

are free!

• But we’ve been producing neutrino beams since the 60s.

• We can confirm neutrino oscillations using a well controlled neutrino

source.

• Long baseline neutrino experiments:

• Produce very intense muon neutrino beam

• Point it at very large detector very far away.

• Use well controlled beam energy, direction and timing to make very precise

measurements.

• Including searching for electron neutrino appearance from a muon neutrino beam.

• Needs non-zero θ13



PRODUCING A NEUTRINO BEAM

40

• https://www.youtube.com/watch?v=U_xWDWKq1CM

1. Accelerate protons and aim them at a target.

2. Focus the resulting pions using magnetic horns.

• Can focus positive or negative pions to give neutrinos or anti-neutrinos.

3. Allow pions to decay in empty volume, producing neutrinos and

muons.

4. Absorb the muons, and neutrinos will go through.

https://www.youtube.com/watch?v=U_xWDWKq1CM


T2K & MINOS experiments
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T2K & MINOS experiments
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NOvA
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THE OFF-AXIS TRICK

• Both NOvA and T2K use the “off-axis trick”.

• Don’t place the detector right in front of the neutrino beam, but a

little to the side.

• Neutrinos that leave the decay pipe at a high angle have a more

well defined energy.

• Can tune L / E very precisely! NOvA

T2K

L=295 km

E = 0.6 GeV

L / E = 492 km / GeV

L=810 km

E = 2.0 GeV

L / E = 405 km / GeV
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NEAR DETECTORS

• Want to characterise the neutrino beam as well as possible before any

oscillations.

• Place neutrino detectors near the neutrino production point.

• Use data from these detectors to measure neutrino cross sections.

NOvA:

Miniaturized version

of far detector

T2K:

Complex of general

purpose detectors
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T2K AND NOVA NEUTRINO EVENTS

NOvAT2K
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T2K AND NOVA DATA

April 7, 2018 37

Muon neutrinos

disappear

Electron neutrinos

appear
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T2K AND NOVA DATA

April 7, 2018 38

Muon neutrinos

disappear

Electron neutrinos

appear

T2K observed electron neutrinos

appearing from a muon neutrino

beam for the first time in 2013

θ13 ≠ 0
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SK (atm), T2K, MINOS, IceCube (atm), NOvA

49



Measurement of θ13



Measurement of θ13 with reactors

• For baselines of ~ 1 km, the probability can be approximated by:

E = 4

MeV
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Measurement of θ13 with two-detector reactor experiments

●
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Antineutrinos detected by inverse β-decay:

on Gd-loaded liquid scintillator calorimeters.

Reactor prediction and the antineutrino detection systematic uncertainties can be
reduced if two identical detectors, one near and one far from the reactors, are built.

●



Double Chooz: a two-detector experiment

nuclear power

plant (Ardennes,

France)

Near Detector

L ~ 400 m

~ 300 /day

120 mwe

December 2014

Far Detector

L ~ 1050 m

~ 40 /day

300 mwe

April 2011

Chooz-B reactors

PWR N4s

2 × 4.25 GWth

~ 1021 /s

100% e
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Electron antineutrino detection

Inverse Beta Decay (IBD):

●

Reaction threshold: E ≥ 1.806 MeV.

Disappearance experiment.

Well known cross-section (0.2%).

Coincidence of 2 signals: background

suppression.

●

●

●

Prompt signal:

●

Positron kinetic energy + ’s from annihilation.

Eprompt ≈ E – 0.782 MeV

Eprompt ~ 1 – 9 MeV

●

●

Delayed signal:

●

’s from radiative neutron capture.

Gd: ΔT ~ 30 μs, Edelayed ~ 8 MeV.

H: ΔT ~ 200 μs, Edelayed = 2.22 MeV.

●

●
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7m

The Double Chooz Far Detector

Inner Detector:

• Neutrino Target: acrylic vessel (8 mm) with

10.3 m3 Gd-loaded (1 g/l) liquid scintillator.

Gamma-Catcher: acrylic (12 mm) vessel with

22.5 m3 of liquid scintillator.

Buffer: stainless steel (3 mm) vessel

supporting 390 10” PMTs, with 110 m3 of non-

scintillating mineral oil.

•

•

Outer Detector:

• Inner Veto: steel (10 mm) vessel supporting

78 8” PMTs, with 90 m3 of liquid scintillator.

Shielding: 15 cm steel.

Outer Veto: plastic scintillator strips.

•

•

© Imag’In IRFU
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Latests measurements of θ13

θ13 unknown until 2011. Huge progress in a few years.

A. Cabrera, FNAL seminar 03/25/2016
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SHORT(ER) BASELINE REACTOR

EXPERIMENTS
• Daya Bay experiment, south China.

• L ~ 1.5 km; E ~ 1 MeV; Minimum Δm2 ~10-3 eV2
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SHORT(ER) BASELINE REACTOR EXPERIMENTS
• In 2012, θ13 went from being the least well known of the

mixing angles to the most precisely measured!
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First glimpse of δ

•  → e depends on the mass hierarchy and CP-violating phase.

Critical input: Using the θ13 from the

reactor experiments, the mass hierarchy

and the CP-violating phase can be studied.

T2K

arXiv:1707.01048 [hep-ex]
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● 3 angles measured (mnemonic approximation):

– θ12 ≈ 34º

θ23 ≈ 45º (sym m e t r y?)

θ13 ≈ 9º

–

–

● CP-violating phase δ?

Why so different from quark mixing?●

3 neutrinos: mixing matrix
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νe

νμ

ντ

=

1

c23 s23

−s23 c23

−iδc13 s13 e

1
iδ−s13e c

13

ν1

ν2 

ν3 → m
3

Atmospheric &
Long-baseline accelerator

experiments

Solar &
KamLAND

experiments

Reactor & Long-baseline
accelerator experiments

→ m
1

→ m2

c12 s12

-s12 c12

1

PMNS matrix: U cij=cosθij, sij=sinθij



3 neutrinos: mass ordering
● 3 mass eigenstates →2 independent squared-mass differences:

But which is on top of which?●

● Matter effects within the Sun show the mass eigenstate 2 is heavier

than 1.

● Which is the lightest neutrino? Two possibilities left:

Normal Inverted
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Future: δ and mass hierarchy
● Both CP-violating phase and the mass hierarchy can be measured in a long-

baseline accelerator experiment.

Need a long baseline and a broad-energy beam to disentangle CP violation
caused by matter effects (Earth is made only from matter) from the intrinsic CP
violation.

●

Neutrino beam expected by 2026.
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● > 5σ measurement of CP-violating phase if CP violation is close to maximal.

– > 3σ measurement for 65% of δ range.

●

> 5σ determination of mass hierarchy for any value of CP-violating phase.

2017: Far Laboratory construction started.

2018: DUNE detector prototypes (protoDUNE) at CERN test beam.

2021: Far Detector installation begins.

2024: Beginning of Physics data taking.

2026: First neutrinos from Fermilab beam.

●

●

●

●

●

DUNE

64



Proton decay at DUNE
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Core-collapse supernova neutrinos at DUNE
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