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Course policies
" Classes from 10:00 AM to 12:30 PM (10 min break at ~ 11:10 AM).
° Attendance record counts.

- Up to four absences
- Lateness or leaving early counts as half-absence

— Send email notifications of all absences to shpattendance@columbia.edu

°  Please, no cell phones during class
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" Lecture materials + Research Opportunities + Resources to become a particle
physicist

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram



https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram
mailto:shpattendance@columbia.edu

Schedule

Month Day Lecture Teacher
September 22 | Introduction Yeon-jae
October 6 | Special Relativity Edward
13 | Quantum-Mechanies Edward
20 | Experimental-Methods Edward
27 | Fhe-Standard-Medel—Overview Yeon-jae
10 | Neutrino Theory Edward
17 | Neutrino Experiment Edward
24 | No classes, SHP break

December LHC and Experiments Yeon-jae
8 | The Higgs Boson and Beyond Yeon-jae
15 | Particle Cosmology Edward
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Neutrinos in the Standard Model

What is special about neutrinos
In the Standard Model?



Neutrinos Iin the Standard Model
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Quarks

Only weak interaction.

Only left-handed neutrinos (and right-
handed antineutrinos) in the Standard
Model.

Initially implemented as massless patrticles.

Neutrino oscillations show neutrinos

£ have mass!
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Neutrino oscillations (two-neutrino example)

* Consequence of neutrino mixing (quantum superposition, as in Schrodinger's cat):
the neutrinos that interact are not the same kind as the neutrinos that propagate.

* Two-flavor approximation: Flavor eigenstates Mass eigenstates
lv))\ [ cos@ sin@) [|v1)
lve) ) \—sinf cosf) \ |vo)

° Transition probability (derivation in blackboard): Mixing angle

v
Amgé
2u i P . 2 Controlled by

sin’(20) = 0.1, Am? = 0.0024 eV? E = 4 MeV

1.00—

° Survival probability: 0.98 -

0.96

Survival probability

Pl%y(LvE) =1-— Py (l;ﬁa:)(LaE)

0.94

0.92

* Neutrino oscillation implies
neutrinos are massive and 080 P
non-degenerated. : s




3 neutrino mixing

Flavor eigenstates (v, v,, v,) # mass eigenstates (v, v,, v,).
Related by Pontecorvo-Maki-Nakagawa-Sakata mixing
matrix: 3 neutrinos — 3 angles (8,,, 8,5, 8,5) + 1 CP-violating

phase (0). PMNS matrix: U Ci-:COSGI-, Si.:sin GI
A | | | |
Cnnmmnm s mm mm s s 2 [ —jg - G g N
Ve| {1 Ci3 S13€ e "1l Vy|—m
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ul = 23 Sp3 s 1 Vo | — M,
T 23
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Atmospheric & Reactor & Long-baseline Solar &
Long-baseline accelerator accelerator experiments KamLAND
experiments experiments

CP-violating phase changes sign for antineutrinos: a source of matter-
antimatter different behavior!

CP violation only possible if all three angles are not zero — need to
measure them all!



Measurement of 8., and Am?2,,



- Solar experiments




Solar neutrinos: pp chain

*  pp chain produces 98.4% of Sun's fusion energy. It also produces electron

neutrinos.
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Solar neutrinos: CNO cycle

CNO cycle produces 1.6% of Sun's fusion energy. It also produces electron
neutrinos.
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Solar neutrinos: pp chain and CNO cycle
lllustrations

0 Proton Y Gamma Ray
O Neutron YV  Neutrino

Proton
Y cammaray O
4He c Neutron
O Positron V' Neutrino
(O Positron




Flux (em-2 s-1)

Solar neutrinos: energy spectrum
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Homestake experiment (1970 - 1994)




Homestake experiment

° In the late 1960s Ray Davis
and John Bahcall set up an
experiment to try to detect
these solar neutrinos.

- Detection of solar neutrinos using
the reaction:

g, T g™ 9T A

Radiochemical detector.

Ratio of observed to predicted:

Ror _ 301+ 0.027

Rssm

*  Missing neutrinos!
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Kamiokande (1983 - 1996)
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Kamiokande

Detection of solar neutrinos using
the reaction:

v +e —uy+te

Water Cherenkov detector.

Ratio of observed to predicted:

(I) Kamiokande

= 0.484 £ 0.066.
Pgsm

Missing neutrinos again!
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Super-Kamiokande

- Detection of solar neutrinos using
the reaction:

vp+e —uv+e

Water Cherenkov detector.
Ratio of observed to predicted:

G
“SK-T 0,406 +0.014

(I'SSM

- Improved result over Kamiokande,
neutrinos still missing!
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Super-Kamiokande

20



Super-Kamiokande

NEUTRINOGRAPHY of the Sun. 500 days exposure!
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SNO (1999 - 2006)




Detection of solar neutrinos using
the reactions:

vi+e” =y +e (ES)
Uk D 6™+ PP (CO)
n+D—-vy+p+n (NC)

Heavy Water Cherenkov detector.
Ratio of observed to predicted:
®5Ro
Pgsm
PSNo
= 0.290 4 0.017
Dssm

(I)NC

SNO = (.853 + 0.075
Pssm

= 0.406 £ 0.046
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SNO
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led to a Nobel prize in 2015. »



Additional material:
Reactor Experiments



KamLAND (2002 - 2011)




KamLAND

West Asia

u-nu-;mwcunnmnhm
| — —— —— 1 — — Vmmaar, e 0N

130°E 1RE 134°E 18°E 138°E 140°E H2'E 144°E HE'E

C.-E. Wulz 49 Wien, Mai 2005
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| v, production at nuclear reactors

= Fission of nuclear fuel (235U, 238U, 239Py, 241Py) > .
produces neutron rich fission products. 3 ‘@ —“@
. " UorPu/ \e \e
m [ decay of fission products: . f@
Ay s Ay -5 e e L e .J_/i
zA zqd Te tV, - _"5‘@\
e e e

-

= Average per fission:
o 200 MeV released.
o 6 antineutrinos.

= Nuclear power plants: greatest man-made
antineutrino source.

= Need to consider nuclear fuel evolution. T T
Time (days)
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KamLAND

* Detection of reactor neutrinos using the inverse beta-decay reaction:

UVed+p—et +n

- Liquid scintillator detector.
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Solar + KamLAND results
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Measurement of 8,, and Am?_



NEUTRINOS FROM THE ATMOSPHERE

® The Earth is constantly being R e
bombarded by cosmic rays (mostly

protons) with astrophysical origin.

® These interact strongly with nuclei in
the atmosphere, producing showers

of hadrons.

® Unstable hadrons eventually decay 1 Vet
to the lightest meson, 1T, which

decays weakly, producing neutrinos!

Cosmic Ray (p, He, etc)
_#__,f-l'

T

0

e

This cosmic ray Imagetsa modified versioh of arlongmai picttre produced by CERN




ATMOSPHERIC NEUTRINO OSCILLATIONS

®* Naively expect 2-to-1 ratio of
muon to electron neutrinos.

®* However, neutrinos produced on the
“far” side of the earth travel
thousands of kilometres before they
reach a detector.

* So, they oscillate!

®* Comparing the number of neutrinos
hitting the detector from the “top”

(short L) to those coming from the
“bottom” (long L) gives a direct

measurement of atmospheric
neutrino oscillations.
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SUPER-KAMIOKANDE

The Super-Kamiokande experiment
was designhed to unambiguously
observe oscillations in atmospheric
neutrinos.

® Following hints from its predecessor,
Kamiokande.

A tank containing 50 kilo-tons of
ultra-pure water is instrumented
with 11000 photo sensors to detect
Cherenkov radiation emitted by
relativistic charged particles.

Excellent particle identification and
directionality.

® Crucial for oscillation measurement.




Super-Kamiokande results
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SUPER-K FIRST RESULTS

® Super-Kamiokande announced
its discovery of oscillations in
atmospheric neutrinos in 1998,

® A clear deficit of “up-going”
muon neutrinos was observed in
the data.

®* Muon neutrinos are oscillating
into tau neutrinos, which are not
detected.

® Effect not seen in electron
neutrinos.
o MUOF\ neu’rrino to elec’rron

neutrino oscillations are sub-
dominant at this L/E.
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l @ Data —— Expectation: best fit - = Expectation: no osc.l
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K results.
2 I }
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ICECUBE ATMOSPHERIC NEUTRINOS

® Icecube sees atmospheric
neutrino oscillations

consistent with the Super-
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®* Note Am?2 ~ 103, 100 times
larger than solar mass splitting!

® Also, the mixing angle is very
large — it looks like mixing is

maximal or close...
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NEUTRINO BEAMS

So far, looked at experiments that use pre-existing neutrino sources.

Either natural: Sun, cosmic rays impinging on the atmosphere.

Or artificial: commercial nuclear reactors — electricity is paid for, but neutrinos

are freel

But we’ve been producing neutrino beams since the 60s.

We can confirm neutrino oscillations using a well controlled neutrino

source.

Long baseline neutrino experiments:

Produce very intense muon neutrino beam

Point it at very large detector very far away.

Use well controlled beam energy, direction and timing to make very precise

measurements.

® Including searching for electron neutrino appearance from a muon neutrino beam.

®* Needs non-zero 0,
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PRODUCING A NEUTRINO BEAM

® https://www.youtube.com/watchz2v=U xWDWKgqg1CM

1. Accelerate protons and aim them at a target.

2. Focus the resulting pions using magnetic horns.

® Can focus positive or negative pions to give neutrinos or anti-neutrinos.

3. Allow pions to decay in empty volume, producing neutrinos and
muons.

4. Absorb the muons, and neutrinos will go through.

Absorber

Target

120 Ge\\
protons

B
From

Main Injector

Hadron Monitor


https://www.youtube.com/watch?v=U_xWDWKq1CM

T2K & MINOS experiments

Super-Kamiokande J-PARC
: Near Detector 280 m

295 km
The MINOS Experiment
Fermilab Soudan
10 km
735 km
12 km
Detector 1 Detector 2
Near Detector: Far Detector:
980 tons 5400 tons
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T2K & MINOS expe_riments

Super-Kamiokande IV
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5ms of data at the NOVA Far Detector
Each pixel is one hit cell
Color shows digitized from the light

NOVA - FNAL E929
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Event: 628855 / SNEWSBeatSlow
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(the many peaks in the timing distribution below)
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THE OFF-AXIS TRICK

® Both NOvVA and T2K use the “off-axis trick”.

(A.U))

295km
¥

o

(]
little to the side.
(]
well defined energy.
® Cantune L / E very precisely!
T2K
= HHHH OA 0.0° -
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i === 0A25° 7
I II“III"lIIm_ ]
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i E=0.6 GeV
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0
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(O8]

Don’t place the detector right in front of the neutrino beam, but a

Neutrinos that leave the decay pipe at a high angle have a more

Medium Energy Tune

T T T T T T T T T I T T T
| * on-axis
80 | — 7 mrad off-axis
— 14 mrad off-axis
| —— 21 mrad off-axis
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E = 2.0 GeV
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NEAR DETECTORS

®* Want to characterise the neutrino beam as well as possible before any
oscillations.

® Place neutrino detectors near the neutrino production point.

® Use data from these detectors to measure neutrino cross sections.

T2K: NOVA:
Complex of general Miniaturized version
purpose detectors of far detector

UAI Magnet_

I C——

:.-.".':_’f =

Barrel ECal




T2K AND NOVA NEUTRINO EVENTS
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T2K A
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T2K AND NOVA DATA

NOVA Preliminary
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SK (atm), T2K, MINOS, IceCube (atm), NOVA
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Measurement of 6,



Measurement of 6,, with reactors
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* For baselines of ~ 1 km, the probability can be approximated by:
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Measurement of 0,, with two-detector reactor experiments

" Antineutrinos detected by inverse (3-decay: Te+p—et+n
on Gd-loaded liquid scintillator calorimeters.

Reactor prediction and the antineutrino detection systematic uncertainties can be
reduced if two identical detectors, one near and one far from the reactors, are built.

s
¢ :

near/ | near 5

3o ',_

R1 d6 R2

Exberiment Reactor Distance (m) Depth (mwe) Target mass

P v power (GW ) Near / Far Near / Far (ton) x detectors
Double Choosz 8.5 400 /1050 120 / 300 B w2
Daya Bay 17.4 470,576 / 1648 260 / 860 20 x 8
RENO 16.5 204 / 1383 120 / 450 16 x 2




Double Chooz: a two-detector experiment

o L~ 1050 m
L ~ 400 m DR ) b | - 40 viday
~ 300 v/day : 2! 300 mwe
120 mwe | A= April 2011

December 2014
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'''''

m
b
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100 /OV e © comwale ruchksre gl /‘\S’
e {; 'O Croys Makilo)
Réacteur 900 MiNe ©fie Bizyas /@
[ Réacteur 1300 Mwe ) Y ITALIE
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N \
ESPAGNE L TN

nuclear power
plant (Ardennes,
France)
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Electron antineutrino detection

| Ve +p— et —+- n'

Inverse Beta Decay (IBD):
Reaction threshold: E, = 1.806 MeV.
Disappearance experiment.

Well known cross-section (0.2%).
Coincidence of 2 signals: background

suppression.
Prompt signal: LA P Emitted spectrum

----- Cross-section

Positron kinetic energy + y’s from annihilation.
Eprompt = E, — 0.782 MeV

Detected spectrum

Eprompt ~ 1 — 9 MeV
Delayed signal:

(arbitrary units)

) i
\ /
" 4
\\ V4
'\ /

‘\‘ 'f(
\ / "

v’s from radiative neutron capture.
Gd: AT ~ 30 MS, Edelayed ~ 8 MeV.
H: AT ~ 200 MS, Edelayed = 2.22 MeV.

2 3 4 5 6 7 8 9
E. (MeV)
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Inner Detector:
acrylic vessel (8 mm) with

10.3 ms Gd-loaded (1 g/l) liquid scintillator.

*  Gamma-Catcher: acrylic (12 mm) vessel with
22.5 ms3 of liquid scintillator.

* Buffer: stainless steel (3 mm) vessel
supporting 390 10” PMTs, with 110 ms of non-

scintillating mineral oil.

Quter Detector:

* Inner Veto: steel (10 mm) vessel supporting
78 8” PMTs, with 90 ms of liquid scintillator.

¢ Shielding: 15 cm steel.
* Outer Veto: plastic scintillator strips.

v. ot (o

(| ‘l.!
17
i

Vi ; L/ -







Latests measurements of 9,

0.5 unknown until 2011. Huge progress in a few years.

Double Chooz

JHEP 1410, 086 (2014)

Preliminary (Moriond)

Daya Bay
PRL 115, 111802 (2015)

RENO

Preliminary (arXiv:1511.05849)

T2K

PRD 91, 072010 (2015)
Ami, =0

1
P published Amg <0

0O preliminary

(0.084+0,005)
ast
. Arbitrary 0.,
" -
e =
N IR I AR P

|—-—| fsinfgle detﬁétcmr

o—f DC newx% 0,3

ol |

005 01 015 02 025

. 2
sin“20,,

A. Cabrera, FNAL seminar 03/25/2016
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SHORT(ER) BASELINE REACTOR
EXPERIMENTS

®* Daya Bay experiment, south China.

®* L~ 1.5km; E~ 1 MeV; Minimum Am2~10-3 eV?2

00
“ etectors
‘|‘ ‘\‘ i ~‘
v 1548
|' %
v 1540
1912
@ detectors detectors
W reactors Py Ling Ao 1I Plant
A distance (meters) 1348
o 1307 Ling Ao 1 Plant
News ’i .22.-% 857
detectors <"
¥ 364
- . Daya Bay Plant
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SHORT(ER) BASELINE REACTOR EXPERIMENTS

® In 2012, 8,5 went from being the least well known of the
mixing angles to the most precisely measured!

7 L __Observation of Electron Antineutrino

Daya Bay,

23 D

sin? 2613 = 0.092 = 0.016(stat) = 0.005(syst)

800 - —+$— Far hall
—}— Near halls (scaled)

Entries / 0.25MeV

-lllllllllllllllllllllllllllllllllllllll
0O 02 04 06 08 1 1.2 14 16 1.8 2
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* v, — Vv, depends on the mass hierarchy and CP-violating phase.

dcp (rad)
R PR SR R

|
)

First glimpse of 0

‘F:u.-'(L-E) =

Fixed Mass Ordering

- FeF 0 F L0
I ---- Normal - 68CL ]
B * Best fit —— Normal - 90CL
i PDG 2015 ---- Inverted - 68CL —]
- —— Inverted - 90CL g
= T2K -
- arXiv:1707.01048 [hep-ex] -
.l_ 1 1 ‘~I 1 l'l' 1 1 1 [ 1 L 1 I L 1 1 ] 1 =
0 0.02 0.04 0.06 0.08 0.1
<2
sin“0,

-+

x sin(d) sin(A) sin(AA)sin[(1 — A)A]

-

x cos(d) cos(A)sin(AA)sin [(1 — A)A]

-+

1

X

A(l-A)

X

A(l-A)

2
x

A?

cos? (B3 sin’(26,5) sin?( AA),

2 2
a = Ams,/Am3, Aol
21 32 _ Am3,L

A=

(4_—1)2 sin?(26,3) sin?(fq3) sin? [(A —1)A]

cos(fy3) sin( 26,5 ) sin(2653 ) sin(26,3) x

— c0s(fq3) sin(26, 5 ) sin(2653 ) sin(26,3) x

A=2 \f EC; F i\'_,_.\

E

Aoin
Am3,

Critical input: Using the 6,5 from the
reactor experiments, the mass hierarchy
and the CP-violating phase can be studied.
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3 neutrinos: mixing matrix

PMNS matrix: U

cij:cosa,j, sij:sin 6“-

— A —
Fannnssnssnnnnssnssnnnnsnsssns 2 [ _ia\f G S N ()
Ve| {1 C13 S13€ e e Vy|—m
vl = c S S12 Cp2
ul = 23 S23 s 1 Vo | — M,
74 =S Co3 ~S13 el C 1
T 23
S AL 13 J(V3) — m,
- 7
v
Atmospheric & Reactor & Long-baseline Solar & 9 9 9
Long-baseline accelerator accelerator experiments KamLAND &T”jk =m; —my
experiments experiments
3 angles measured (mnemonic approximation):
- 912 = 340
- 0 =45° (symmetry?) CKM Upmns
| I
- elgz 90 —— = = =2
u Ve -
CP-violating phase 6? H- . o
Why so different f cmixingy ©| e | v H
y so different from quark mixing” =
B N B
d s b Vi V2 Vg
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3 neutrinos: mass ordering

3 mass eigenstates —2 independent squared-mass differences: Am3, + Am3; = Am3,

But which is on top of which?

Matter effects within the Sun show the mass eigenstate v, is heavier
than v,.

Which is the lightest neutrino? Two possibilities left:

Normal Inverted

m? m?
A [ Y A

Y

Y

M e — —+m,?
T | solar~7x10%eV?
—

2
atmospheric T™M
~2x107eV?

atmospheric

my ' e ———— ~2x10~%eV?2

2 2
.i"”l —— —11!3




Future: 0 and mass hierarchy

- Both CP-violating phase and the mass hierarchy can be measured in a long-
baseline accelerator experiment.

- Need a long baseline and a broad-energy beam to disentangle CP violation
caused by matter effects (Earth is made only from matter) from the intrinsic CP

violation.

(&)
SUNVE
s 1300 km
<

South Dakota

Chicago

Sanford L B
Underground I m—— R L —
Research — oo
Facility {(, :

Fermilab

Neutrino beam expected by 2026.
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CP Violation Sensitivity

10
E DUNE Sensitivity 7 years (staged)
- Normal Ordering
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30

- DUNE Sensitivity 7 years (staged)

- Normal Ordering

[ sin26,, = 0.085 +0.003 10 years (staged)

E 5= 0. +0.
25} 6,,: NuFit 2016 (90% C.L. range) ~-==--* sin2623 = 0.441 + 0.042
20( 4+

ollllllllllllllll

1 -0.8-0.6-0.

> 50 measurement of CP-violating phase if CP violation is close to maximal.

- > 30 measurement for 65% of & range.

> 50 determination of mass hierarchy for any value of CP-violating phase.

2017: Far Laboratory construction started.

2018: DUNE detector prototypes (protoDUNE) at CERN test beam.
2021: Far Detector installation begins.

2024: Beginning of Physics data taking.

2026: First neutrinos from Fermilab beam.
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Proton decay at DUNE
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Core-collapse supernova neutrinos at DUNE
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