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Course policies
● Attendance record counts

– Up to four absences

– Lateness or leaving early counts as half-absence 

– Send email notifications of all absences to 
shpattendance@columbia.edu.

● Please, no cell phones during class

● Please, ask questions!

● Lecture materials

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram

mailto:shpattendance@columbia.edu
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram
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Schedule
Month Day Lecture Teacher

September 16 Introduction José

23 History of Particle Physics José

30 No classes -- Yom Kippur -

October 7 Special Relativity Inês

14 Quantum Mechanics Inês

21 Experimental Methods Cris

28 The Standard Model - Overview Cris

November 4 The Standard Model - Limitations Cris

11 Neutrino Theory José

18 Neutrino Experiment José

25 No classes -- Thanksgiving -

December 2 LHC and Experiments Inês

9 The Higgs Boson and Beyond Inês

16 Particle Cosmology Cris
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Neutrinos in the Standard Model
● Only weak interaction.

Only left-handed neutrinos (and right-
handed antineutrinos) in the Standard 
Model.

● Initially implemented as massless particles.

Neutrino oscillations show neutrinos 
have mass!

● Why neutrino masses are so different from 
the other fermions?

Are neutrinos acquiring mass through 
the same mechanism (Higgs) or from 
something else?
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Neutrino oscillations (two-neutrino example)

● Two-flavor approximation:

 Transition probability (derivation in blackboard):

 Survival probability:

● Neutrino oscillation implies 
neutrinos are massive and 
non-degenerated.

Controlled by 
the experiment

Flavor eigenstates Mass eigenstates

● Consequence of neutrino mixing (quantum superposition, as in Schrödinger's cat): 
the neutrinos that interact are not the same kind as the neutrinos that propagate.

Mixing angle
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3 neutrino mixing

• Flavor eigenstates (e, μ, τ) ≠ mass eigenstates (1, 2, 3).

• Related by Pontecorvo-Maki-Nakagawa-Sakata mixing matrix:

3 neutrinos → 3 angles (θ12, θ23, θ13) + 1 CP-violating phase (δ).

PMNS matrix: U

(
νe

νμ

ντ
)=(

1
c23 s23

−s23 c23
)(

c13 s13 e
−iδ

1
−s13 e

iδ c13
)(

c12 s12

−s12 c12

1
)(

ν1

ν2

ν3
)

c ij=cosθij , sij=sin θij

Atmospheric &
Long-baseline accelerator 

experiments

Solar &
KamLAND

experiments

• CP-violating phase changes sign for antineutrinos: a source of matter-
antimatter different behavior!

• CP violation only possible if all three angles are not zero → need to 
measure them all!

Reactor & Long-baseline 
accelerator experiments

→ m
1

→ m
2

→ m
3
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Measurement of θ
12

 and Δm2
21
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Solar experiments
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Solar neutrinos: pp chain
● pp chain produces 98.4% of Sun's fusion energy. It also produces electron 

neutrinos.



10

Solar neutrinos: CNO cycle
● CNO cycle produces 1.6% of Sun's fusion energy. It also produces electron 

neutrinos.
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Solar neutrinos: energy spectrum
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Homestake experiment (1970 - 1994)

1966
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Homestake experiment

● Detection of solar neutrinos using 
the reaction:

● Radiochemical detector.

● Ratio of observed to predicted:

● Missing neutrinos!
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Kamiokande (1983 - 1996)
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Kamiokande

● Detection of solar neutrinos using 
the reaction:

● Water Cherenkov detector.

● Ratio of observed to predicted:

● Missing neutrinos again!
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Super-Kamiokande (since 1996)
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Super-Kamiokande

● Detection of solar neutrinos using 
the reaction:

● Water Cherenkov detector.

● Ratio of observed to predicted:

● Improved result over Kamiokande, 
neutrinos still missing!
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Super-Kamiokande
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Super-Kamiokande
● NEUTRINOGRAPHY of the Sun. 500 days exposure!
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SNO (1999 - 2006)
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SNO

● Detection of solar neutrinos using 
the reactions:

● Heavy Water Cherenkov detector.

● Ratio of observed to predicted:
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SNO
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KamLAND (2002 - 2011)
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KamLAND
● Detection of reactor neutrinos using the inverse beta-decay reaction:

● Liquid scintillator detector. 
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Solar + KamLAND results
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Measurement of θ
23

 and Δm2
atm
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Atmospheric neutrinos
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Super-Kamiokande results
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IceCube
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Accelerator neutrinos

https://www.youtube.com/watch?v=U_xWDWKq1CM

https://www.youtube.com/watch?v=U_xWDWKq1CM
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T2K & MINOS experiments
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T2K & MINOS experiments
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NOvA
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SK (atm), T2K, MINOS, IceCube (atm), NOvA
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Measurement of θ
13
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Measurement of θ13 with reactors

• For baselines of ~ 1 km, the probability can be approximated by:

E = 4 
MeV
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Measurement of θ13 with two-detector reactor experiments

● Antineutrinos detected by inverse β-decay:

on Gd-loaded liquid scintillator calorimeters.
● Reactor prediction and the antineutrino detection systematic uncertainties can be 

reduced if two identical detectors, one near and one far from the reactors, are built.
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Double Chooz: a two-detector experiment

EDF’s Chooz 
nuclear power 
plant (Ardennes, 
France)

Near Detector

L ~ 400 m

~ 300 /day

120 mwe

December 2014

Far Detector

L ~ 1050 m

~ 40 /day

300 mwe

April 2011

Chooz-B reactors

PWR N4s

2 × 4.25 GWth

~ 1021 /s

100%  e
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Electron antineutrino detection

Inverse Beta Decay (IBD):

● Reaction threshold: E ≥ 1.806 MeV.

● Disappearance experiment.

● Well known cross-section (0.2%).

● Coincidence of 2 signals: background 

suppression.

Prompt signal:

● Positron kinetic energy + ’s from annihilation.

● Eprompt ≈ E – 0.782 MeV

● Eprompt ~ 1 – 9 MeV

Delayed signal:

● ’s from radiative neutron capture.

● Gd: ΔT ~ 30 μs, Edelayed ~ 8 MeV.

● H: ΔT ~ 200 μs, Edelayed = 2.22 MeV.
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7m 

7m
 

The Double Chooz Far Detector

Inner Detector:

• Neutrino Target: acrylic vessel (8 mm) with 
10.3 m3 Gd-loaded (1 g/l) liquid scintillator.

• Gamma-Catcher: acrylic (12 mm) vessel with 
22.5 m3 of liquid scintillator.

• Buffer: stainless steel (3 mm) vessel 
supporting 390 10” PMTs, with 110 m3 of non-
scintillating mineral oil.

Outer Detector:

• Inner Veto: steel (10 mm) vessel supporting 
78 8” PMTs, with 90 m3 of liquid scintillator.

• Shielding: 15 cm steel.

• Outer Veto: plastic scintillator strips.

© Imag’In IRFU
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Latests measurements of θ13 

θ13 unknown until 2011. Huge progress in a few years.

A. Cabrera, FNAL seminar 03/25/2016
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First glimpse of δ 
• →e depends on the mass hierarchy and CP-violating phase.

Critical input: Using the θ13 from the 
reactor experiments, the mass hierarchy 
and the CP-violating phase can be studied.

T2K
arXiv:1707.01048 [hep-ex]
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● 3 angles measured (mnemonic approximation):

– θ12  ≈ 34º

– θ23  ≈ 45º (symmetry?)

– θ13 ≈ 9º

● CP-violating phase δ?

● Why so different from quark mixing?

3 neutrinos: mixing matrix 
PMNS matrix: U

(
νe

νμ

ντ
)=(

1
c23 s23

−s23 c23
)(

c13 s13 e
−iδ

1
−s13 e

iδ c13
)(

c12 s12

−s12 c12

1
)(

ν1

ν2

ν3
)
c ij=cosθij , sij=sin θij

Atmospheric &
Long-baseline accelerator 

experiments

Solar &
KamLAND

experiments

Reactor & Long-baseline 
accelerator experiments

→ m
1

→ m
2

→ m
3
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3 neutrinos: mass ordering
● 3 mass eigenstates →2 independent squared-mass differences: 

● But which is on top of which? 

● Matter effects within the Sun show the mass eigenstate 2 is heavier 
than 1.

● Which is the lightest neutrino? Two possibilities left:

Normal Inverted
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Future: δ and mass hierarchy
● Both CP-violating phase and the mass hierarchy can be measured in a long-

baseline accelerator experiment.

● Need a long baseline and a broad-energy beam to disentangle CP violation 
caused by matter effects (Earth is made only from matter) from the intrinsic CP 
violation.

Neutrino beam expected by 2026.
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● > 5σ measurement of CP-violating phase if CP violation is close to maximal.

– > 3σ measurement for 65% of δ range.

● > 5σ determination of mass hierarchy for any value of CP-violating phase.

● 2017: Far Laboratory construction started.

● 2018: DUNE detector prototypes (protoDUNE) at CERN test beam.

● 2021: Far Detector installation begins.

● 2024: Beginning of Physics data taking.

● 2026: First neutrinos from Fermilab beam.

DUNE
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Proton decay at DUNE
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Core-collapse supernova neutrinos at DUNE
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