Particle Physics:
Neutrinos — part |

Jose |. Crespo-Anadon

Week 8: November 10, 2017
Columbia University Science Honors Program

&2 COLUMBIA UNIVERSITY ill"lﬁ

IN THE CITY OF NEW YORK NEVIS LABORATORIES




Course policies

Attendance record counts

- Up to four absences
- Lateness or leaving early counts as half-absence

- Send email notifications of all absences to
shpattendance@columbia.edu.

Please, no cell phones during class

Please, ask questions!
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© uNewmoThey o
18 Neutrino Experiment José

December 2 LHC and Experiments Inés

16 Particle Cosmology Cris
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Neutrino oscillations (two-neutrino example)

Consequence of neutrino mixing (quantum superposition, as in Schrddinger's cat):
the neutrinos that interact are not the same kind as the neutrinos that propagate.

* Two-flavor approximation: Flavor eigenstates Mass eigenstates

lv))\ [ cos@ sin@)\ [|vy)
lve))  \—sin@ cosf) \|vs)
Transition probability (derivation in blackboard): Mixing angle
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Pl%cy(l#:c)(L? E) _ Sinz(QQ)‘SiHQ (%) Controlled by
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sin®(20) = 0.1, Am? = 0.0024 eV?, E = 4 MeV

1.00—

Survival probability:
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0.96
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0.94
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* Neutrino oscillation implies .
neutrinos are massive and 0.90F
non-degenerated. . 10




3 neutrino mixing

Flavor eigenstates (v, v, v,) # mass eigenstates (v, v,, V).

Related by Pontecorvo-Maki-Nakagawa-Sakata mixing matrix:
3 neutrinos — 3 angles (6,,, 0,,, 6,,) + 1 CP-violating phase (0).

PMNS matrix: U c.=cosf.., s.=sin0..
A ) =y )
-~ ‘ TN
—ié
Vi | €z Sp3 1 S Cp Vol - m,
— _ i6
V. Sz Cp3 | 513€ Ci3 Lj\vs| - m,
A - 4 ‘
~"
Atmospheric & Reactor & Long-baseline Solar &
Long-baseline accelerator accelerator experiments KamLAND
experiments experiments

CP-violating phase changes sign for antineutrinos: a source of matter-
antimatter different behavior!

CP violation only possible if all three angles are not zero — need to
measure them all!



Measurement of 6,, and Am~_



Solar experiments




Solar neutrinos: pp chain

* pp chain produces 98.4% of Sun's fusion energy. It also produces electron

neutrinos.
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Solar neutrinos: CNO cycle

CNO cycle produces 1.6% of Sun's fusion energy. It also produces electron
neutrinos.
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Flux (em~2 g-1)

Solar neutrinos: energy spectrum

1012 ¢ ' ' L A B L L ' ' T ™
10t F/"’”_\ e Bahcall-Serenelli 2005
: pp~| £1%
100 & Neutrino Spectrum (+1ad)
05 | "Be-+|10.5%
BN - ""_.:_-_:._‘—H-.—_.H
108 =T - -~ LT
P - =" pep-++2h
Ty ': |
IDTF-'" 1 1
E === |- W
| B - - I 1 -
Lo e :
100 +10.5¢%
I ’_/_’_,-r"
1[}‘?///#
109 F
1D3IL_"
1D] ' A il 1 L ,.r-"rrfru
0.1

Neutrino Energy in MeV

11



Homestake experiment (1970 - 1994)
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Homestake experiment

« Detection of solar neutrinos using
the reaction:

11, B gep 8T Ky
 Radiochemical detector.

« Ratio of observed to predicted:

— = 0.301 £+ 0.027

e Missing neutrinos!
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Kamiokande (1983 - 1996)
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Kamiokande

« Detection of solar neutrinos using
the reaction:

vp+e —u+te
« Water Cherenkov detector.

« Ratio of observed to predicted:

{I) ‘.Ll'l'li(.'l Allde - .
Kemiokande: . (484 £0:066

P

 Missing neutrinos again!
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Super-Kamiokande

« Detection of solar neutrinos using
the reaction:

v +e —uv+e
« Water Cherenkov detector.

« Ratio of observed to predicted:

PSK-T _ () 406 + 0.014

(I'SSM

 Improved result over Kamiokande,
neutrinos still missing!

17



Super-Kamiokande
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Super-Kamiokande

« NEUTRINOGRAPHY of the Sun. 500 days exposure!
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SNO (1999 - 2006)
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Detection of solar neutrinos using
the reactions:

vi+e =y +e (ES)
v € gty (CC)
v+D—y+p+n (NC)

Heavy Water Cherenkov detector.

Ratio of observed to predicted:

PR o

P

(I)CC
SNO — ().290 & 0.017

Dgsm

(I)NC

—SNO — ().853 + 0.075

Dggm

= (0.406 £ 0.046
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SNO
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KamLAND (2002 - 2011)
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C.-E. Wulz

KamLAND
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‘ v, production at nuclear reactors

= Fission of nuclear fuel (**°U, 238U, 23%Puy, 241Pu) o e
produces neutron rich fission products. o /‘%\ “3 @\
or Fu e"
m [3- decay of fission products: > @ .
- e " ¥y 7
AX—> AV +e +v, ;g@/_.@/_,g@/
\g‘ \e*' \‘

= Average per fission:
o 200 MeV released.
o 6 antineutrinos.

r # of ﬂssions.
120 il

100
8o

snf—
= Nuclear power plants: greatest man-made
antineutrino source.

400
20

= Need to consider nuclear fuel evolution. WLt

100 200 300 400 500
Time (days)
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KamLAND

« Detection of reactor neutrinos using the inverse beta-decay reaction:

UVed+p—et +n

 Liquid scintillator detector.

Calibration Device

LS Balloon
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Solar + KamLAND results
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Measurement of 623 and Am?
atm



Atmosbpheric neutrinos

Cosmic ray

Zenith
Isotropic flux of :

cosmic rays /\




Super-Kamiokande results
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Sub-GeV e-like
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Accelerator neutrinos

Muon Monitors

Target Hall Evacuated Pipe
s o Beam Stop
Target \ i
S | S5 | T = T
Protons from \ — : e | | SSSEEE S
g -ﬂ: ﬂ -

Main Injector “- 28 "
Horn 1 Horn 2 e | 1] 1 | S
10m 30m _H+ v

3 . 12m  18m  300m
Hadron (pion) Monitor .

Rock

https://www.youtube.com/watch?v=U_xWDWKq1CM
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T2K & MINOS experiments

Super-Kamiokande

Near Detector 280 m

J-PARC

295 km

Fermilab Soudan
10 km
735 km
12 km
Detector 1 Detector 2
Mear Detector: Far Detector:
980 tons 5400 tons

33



T2K & MINOS experiments

Super-Kamiokande IV J .-'/ A
T2K Beam Run 0 Spill 822275 I. |
Run 66778 Sub 585 Event 134229437 A

1902.2 ns

Charge (pe)
. =26.7

.
1

T
R

g1
S P
a 500 100 1600 2000 a 500 1000 1500 2000

0D Times (ns) Times (ns)

Date : 20 Mar 2005 Time :11:56:32 Run:29470 5 Snarl : 63498

EventType : Upward Muon Cand
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Detector
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—4— Data —
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Reconstructed Neutrino Energy (GeV)

S5ms of data at the NOvA Far Detector
Each pixel is one hit cell
Color shows digitized from the light

Several hundred cosmic rays crossed the detector
(the many peaks in the timing distribution below)
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SK (atm), T2K, MINOS, IceCube (atm), NOVA
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Measurement of 0,



Measurement of 0,, with reactors

P.(L,E) =

=1 | cos*(#,3) sin®(26,5)fsin? i
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1.0
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O
2 ]
o 0.6]
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co4d " T
? || 7, E=4
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b | SR 100
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* For baselines of ~ 1 km, the probability can be approximated by:

Poo(L,E)~1—

sin?(26,3)|si

~ 1 — sin?(20,3) sin® (1.27

Am?2
4F

Am2,[eV?]L[m] )
E[MeV]
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Measurement of 0,, with two-detector reactor experiments

« Antineutrinos detected by inverse (3-decay: (. +p— et +n
on Gd-loaded liquid scintillator calorimeters.

« Reactor prediction and the antineutrino detection systematic uncertainties can be
reduced if two identical detectors, one near and one far from the reactors, are built.

OUBLE . ]
“@ .".’.’..‘:‘; ’.
ofa S/ E?ﬁc
R1 °R3
o /1 ‘
near / i FORE
B """"""" :‘; 115
R1 d& R2
. iment Reactor Distance (m) Depth (mwe) Target mass
Xperimen power (GW ) Near / Far Near / Far (ton) x detectors
Double Choosz 8.5 400 / 1050 120 / 300 B w2
Daya Bay 17.4 470,576 / 1648 260 / 86O 20 x 8
RENO 16.5 204 /1383 120 / 450 16 = 2
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Double Chooz: a two-detector experiment

_. ‘ " L ~ 1050 m
L~ 400 m S 4| ~40vi/day
~ 300 v/day _ 2| 300 mwe

N e
120 mwe perant oerecron - April 2011

December 2014

PAYS-BAS
S 5

,; - PWRN4S &, mt (g
a4 2 x 4,25 GW,, " i NN,
e 0~ 107 /s

100%v |

©)

ROYAUME-UNI

[Brennits]

B ==
M \
TN, ;
ESPAGNE ANDORRE
— -

EDF's Chooz
nuclear power
plant (Ardennes,
France)
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Electron antineutrino detection

EA +p— et + n

Inverse Beta Decay (IBD):
 Reaction threshold: E, = 1.806 MeV.
* Disappearance experiment.
*  Well known cross-section (0.2%).

* Coincidence of 2 signals: background
suppression.

TT [T T 1T T [T T Tr o1 [T 11

Prompt signal: e Emitted spectrum
* Positron kinetic energy + y's from annihilation. | | ___ Cross-section

° Eprompt = E,—0.782 MeV Detected spectrum
Eprompt ~ 1 — 9 MeV

Delayed signal:
* v's from radiative neutron capture.

° Gd: AT - 30 HS, Edelayed - 8 |\/|eV
° H: AT -~ 200 US, Edelayed = 222 |\/|eV

(arbitrary units)

i /
\ /
v /
\ Vs
X /

.‘\ s
\ / "

2 3 4 5 6 7 8 9
E. (MeV)
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Inner Detector:

acrylic vessel (8 mm) with
10.3 m3 Gd-loaded (1 g/l) liquid scintillator.

*  Gamma-Catcher: acrylic (12 mm) vessel with
22.5 ms of liquid scintillator.

* Buffer: stainless steel (3 mm) vessel
supporting 390 10” PMTs, with 110 m3 of non-
scintillating mineral oil.

Outer Detector:

* Inner Veto: steel (10 mm) vessel supporting
78 8” PMTs, with 90 ms of liquid scintillator.

* Shielding: 15 cm steel.
*  Outer Veto: plastic scintillator strips.
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Latests measurements of 0,

0.5 unknown until 2011. Huge progress in a few years.

Double Chooz

JHEP 1410, 086 (2014)

Preliminary (Moriond)

Daya Bay
PRL 115, 111802 (2015)

RENO

Preliminary (arXiv:1511.05849)

T2K

PRD 91, 072010 (2015)
Ami, >0

1
® published Am <0

'e) preliminary

5{0.03410:.11:{)5)
o
% . Arbitrary 0.,
—————
e =
A I R S R

|—-—| fsinfgle detécmr

i DC new% 0,,

ol |

005 01 015 02 025

sin”20,,

A. Cabrera, FNAL seminar 03/25/2016
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dcp (rad)
L

I
W

First glimpse of 6

* v, ~ V. depends on the mass hierarchy and CP-violating phase.

(98]

(5]

=]

. _ 1 e L = el _
P,.(L,E)= H—l_}ﬂﬁlllz(zﬁlg) sin®(fa3) sin® [(A — 1)4]
Y . : Ay !
——  c0s8(fq3) sin( 26,5 ) 8in(2653 ) sin(26,3) x
:Ffl(l—fl) 08(#13) sin( 26,2 ) sin(2653 ) sin(26,3)
x sin(d) sin(A) sin(AA)sin[(1 — A)A]
—— leethft‘slsOrdlerlIng, | — -|-m(-.UH[_913)HIH(2912)hlll(2923):-111[2913),»<
: s Bostfit o nomal- 681 1 x cos(8) cos(A) sin(AA) sin [(1 — A)A]
S PDG 2015 ---- Inverted - 68CL —] o
L —— Inverted - 90CL - = TR L R :
1: 1 + 12 cos”(Ha3) sin“(26,5) sin“( AA),
i - = Am2,/Am3, oK)
: : Q 21/ 32 E Am3,L -
- E AE . — 2\/5(‘;1: N, A2
E 2 ATTLS.
C, T2K - 32
B arXiv:1707.01048 [hep-ex] - o ] _
= iR e e Critical input: Using the 6, from the
0 0.06 0.08 0.1 . .
- reactor experiments, the mass hierarchy
13

and the CP-violating phase can be studied.
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3 neutrinos: mixing matrix

PMNS matrix: U c.=cosf.., s.=sinb..
oA l /AN U
-~ ‘ N
—id
V| Coz  Sy3 1 S Cp (V2| = m,
_ . i6
V. Sy3 Co3 | 5136 C13 ' 1 Va3 - m,
\ - 4
~"
Atmospheric & Reactor & Long-baseline Solar &
Long-baseline accelerator accelerator experiments KamLAND Am? p = m? — T"""’i
experiments experiments J J

3 angles measured (mnemonic approximation):
0., = 34°
9. %450 2 Uckm U
0,; = 45° (symmetry?) PMNS
_ 9,%90 I I
CP-violating phase 6?

Why so different from quark mixing?

d s b Vi Vo V3
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3 neutrinos: mass ordering

3 mass eigenstates — 2 independent squared-mass differences: Am3, + Am3, = Am3,
But which is on top of which?

Matter effects within the Sun show the mass eigenstate v, is heavier
than v,.

Which is the lightest neutrino? Two possibilities left:

Normal Inverted

m? m2
N Ry N

Y

Y

mf—— I Lm,?
A f . —5.372 -
solar~T=10"eV
I

2
atmospheric T
~2x10-3cV?2 |
atmospheric
My — ~2x10~%eV?2
m>1 my?
0 0 47




Future: & and mass hierarchy

« Both CP-violating phase and the mass hierarchy can be measured in a long-
baseline accelerator experiment.

* Need a long baseline and a broad-energy beam to disentangle CP violation
caused by matter effects (Earth is made only from matter) from the intrinsic CP
violation.

e

South Dakota ault L

Underground
Research g
Facility =

- 1300 km

<
Chicago

Fermilak

e ———
- -

Neutrino beam expected by 2026.
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CP Violation Sensitivity

10;

DUNE Sensitivity 7 years (slaged)
Normal Ordering

OF sin26,, = 0.085 + 0.003 |10 years (Ssagod)
8,5: NuFit 2016 (90% C.L. range) =====* sin’d,, = 0.441 + 0.042

8

7

6

[$)]

N W B

0—1 -0.8-0.6-04-0.2 0

Sop/m

0.2 0.4 0.6 0.8 1

DUNE

Mass Hierarchy Sensitivity

30

DUNE Sensitivity

Normal Ordering

sin26,, = 0.085 + 0.003

8,,: NuFit 2016 (90% C.L. range)

7 years (staged)
| 10 years (staged)

o5l o, NuFit 2016 (90% C.L. range) -+~ sin%,, = 0.441 + 0.042

20

IIIIIIIIIII
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’1 080604020 0204 0608 1

> 50 measurement of CP-violating phase if CP violation is close to maximal.

- > 30 measurement for 65% of & range.

> 50 determination of mass hierarchy for any value of CP-violating phase.

2017: Far Laboratory construction started.

2018: DUNE detector prototypes (protoDUNE) at CERN test beam.

2021: Far Detector installation begins.
2024: Beginning of Physics data taking.

2026: First neutrinos from Fermilab beam.
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Proton decay at DUNE

Soudan Frejus Kamiokande IMB Super-K Hyper-K

p—etn®

p—etal

predictions

p—etKY
‘p—>‘UJ+KO
n — vK°
p— VK™

p— KT
predictions

: " R ¢ P R R N
PIESESISE i b I mASUSYISUS) IR
Bk e S R RS . flipped SU(S)

- SUSYSO(10)
e 6D SO(10)

© non-SUSY SO(10) Gzzap

$impfmmm—— oL AND
g
minimal SUSY SU(5)

" Hyper-K

; non-minimal SUSY SU(5)

~ SUSYS0(10)

31
10

32 33 34
10 10 10 1 035
/B (years)
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Core-collapse supernova neutrinos at DUNE

Galaxy Edge LMC Andromeda
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