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Course Policles

Attendance

Up to four absences
Send email notifications of all absences to
shpattendance@columbia.edu.

Please, no cell phones

Please, ask questions!

Lecture materials
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram
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8. Neutrinos — part | (José)

9. Neutrinos - part Il (José)
10. LHC and Experiments (Inés)

11. The Higgs Boson and Beyond (Inés)

12. Particle Cosmology (Cris)
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Neutrinos in the Standard Model

Three Generations
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Only left-handed neutrinos (and right-handed
antineutrinos) in the Standard Model.

Initially implemented as massless particles.

- Neutrino oscillations show neutrinos have
mass!

Why neutrino masses are so different from the
other fermions?

- Are neutrinos acquiring mass through the
same mechanism (Higgs) or from
something else?
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Neutrino oscillations (2-neutrino example)

Consequence of neutrino mixing (quantum superposition, as in Schrodinger's cat):
the neutrinos that interact are not the same as the neutrinos that propagate.

* Two flavor approximation: Flavor eigenstates Mass eigenstates

() = (e 2on) ()

Transition probability (derivation in blackboard):

.
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1.00—

Survival probability:
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* Neutrino oscillation implies .
neutrinos are massive and 0.90F
non-degenerated. . 10




3 neutrino mixing

Flavor eigenstates (v, v, v)) # mass eigenstates (v,, v, V).

Related by Pontecorvo-Maki-Nakagawa-Sakata mixing matrix:
3 neutrinos — 3 angles (6,,, 0,,, 6,,) + 1 CP-violating phase (0).

PMNS matrix: U c.=cosf.., s.=sinf..
. ) =y )
—ié
VT €z Sp3 1 1Sz Cp Vol - m,
_ . i6 1
v, S;3_Cos|=5p3€ Ciq ,)\ L]l vy| = m,
\ - 4
~"
Atmospheric & Reactor & Long-baseline Solar &
Long-baseline accelerator accelerator experiments KamLAND
experiments experiments

CP violation only possible if all three angles are not zero.



Measurement of 6,, and Am~_






Solar neutrinos: pp chain

98.4% of Sun's fusion energy.
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Solar neutrinos: CNO cycle

* 1.6% of Sun's fusion energy.
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Flux (em~2 g-1)

Solar neutrinos: energy spectrum
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Homestake experiment
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Homestake experiment

« Detection of solar neutrinos using
the reaction:

i, B2 e 3T Ky

« Ratio of observed to predicted:

— = 0.301 £0.027

e Missing neutrinos!
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Kamiokande
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Kamiokande

« Detection of solar neutrinos using
the reaction:

v+e —u+te
« Ratio of observed to predicted:

o amiokande ;
Ramiokande _ ().484 + 0.066.

Dt

e Missing neutrinos again!
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Super-Kamiokande
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Super-Kamiokande

« Detection of solar neutrinos using
the reaction:

vi+e —uv+e

« Ratio of observed to predicted:

Doy
“SK-T 0,406 +0.014

(I'SSM

« Improved result over Kamiokande,
neutrinos still missing!
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Super-Kamiokande
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Super-Kamiokande

« NEUTRINOGRAPHY of the Sun. 500 days exposure!
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« Detection of solar neutrinos using
the reaction:

v+e —vy+e (ES)
ve+D—e” +p+p (CC)
v+D—-y+p+n (NC)

« Ratio of observed to predicted:

PR o

P

(I,CC
SNO — (0.290 + 0.017

Dgam

(I)NC

—SNO _— ).853 + 0.075
Pggm

= 0.406 £+ 0.046
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SNO
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KamLAND
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C.-E. Wulz

KamLAND

49
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‘ v, production at nuclear reactors

= Fission of nuclear fuel (**°U, 238U, 23%Puy, 241Pu) o e
produces neutron rich fission products. o /‘%\ “3 @\
or Fu e"
m [3- decay of fission products: > @ .
- e " ¥y 7
AX—> AV +e +v, ;g@/_.@/_,g@/
\g‘ \e*' \‘

= Average per fission:
o 200 MeV released.
o 6 antineutrinos.

r # of ﬂssions.
120 il

100
8o

snf—
= Nuclear power plants: greatest man-made
antineutrino source.

400
20

= Need to consider nuclear fuel evolution. WLt

100 200 300 400 500
Time (days)
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KamLAND

Detection of reactor neutrinos using the inverse beta-decay reaction:

177(-: +p — f‘3+ +n

Survival Probability

— 3-v best-fit oscillation —e— Data - BG - Geo V,

20 30 40 50 60 70 80 90 100
Ly/E, (km/MeV)
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Solar + KamLAND results
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Measurement of 623 and Am?
atm



Atmosbpheric neutrinos

Cosmic ray

Zenith
Isotropic flux of :

cosmic rays /\




Super-Kamiokande results
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Accelerator neutrinos

Muon Monitors
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T2K & MINOS experiments

Super-Kamiokande

Near Detector 280 m

J-PARC

295 km

Fermilab Soudan
10 km
735 km
12 km
Detector 1 Detector 2
Mear Detector: Far Detector:
980 tons 5400 tons
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T2K & MINOS experiments
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SK (atm) & T2K & MINOS
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Measurement of 0,



Flavor Fraction

Measurement of 0,, with reactors
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* For baselines of ~ 1 km, the probability can be approximated by:
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Measurement of 0,, with two-detector reactor experiments

« Antineutrinos detected by inverse (3-decay: (. +p— et +n
on Gd-loaded liquid scintillator calorimeters. |

» Reactor prediction and the antineutrino detection systematics can be reduced if two
identical detectors, one near and one far from the reactors, are built.

OUBLE . ]
“@ .".’.’..‘:‘; ’.
ofa S/ E?ﬁc
R1 °R3
o /1 ‘
near / i FORE
B """"""" :‘; 115
R1 d& R2
. iment Reactor Distance (m) Depth (mwe) Target mass
Xperimen power (GW ) Near / Far Near / Far (ton) x detectors
Double Choosz 8.5 400 / 1050 120 / 300 B w2
Daya Bay 17.4 470,576 / 1648 260 / 86O 20 x 8
RENO 16.5 204 /1383 120 / 450 16 = 2
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Double Chooz: a two-detector experiment

L~400m R 4| ~40viday

~ 300 v/day
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December 2014

R .
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oM Npos (g

\'-'T-L-i 300 mwe
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I
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* - 7
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e
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ITALIE

EDF’s Chooz
nuclear power
plant (Ardennes,
France)
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Electron antineutrino detection

Inverse Beta Decay (IBD): | (37 p— et + n

« Reaction threshold: E, = 1.806 MeV.
« Disappearance experiment.
* Well known cross-section (0.2%).

« Coincidence of 2 signals: background
suppression.

Prompt signal:

II|1IIII:’IIIII

» Positron kinetic energy + y's from annihilation.
e  Epomp = E,—0.782 MeV

Emitted spectrum

Cross-section

Detected spectrum

¢ Epomp~ 1—9MeV

Delayed signal:
* v's from radiative neutron capture.
+  Gd: AT ~ 30 S, Eceneq ~ 8 MeV. /
 H: AT ~ 200 ps, Egelayed = 2.22 MeV.

(arbitrary units)

2 3 4 5

6 7

8

9

E, (MeV)
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Inner Detector:

acrylic vessel (8 mm) with
10.3 m3 Gd-loaded (1 g/l) liquid scintillator.

*  Gamma-Catcher: acrylic (12 mm) vessel with
22.5 ms of liquid scintillator.

* Buffer: stainless steel (3 mm) vessel
supporting 390 10” PMTs, with 110 ms3 of non-
scintillating mineral oil.

Outer Detector:

* Inner Veto: steel (10 mm) vessel supporting
78 8” PMTs, with 90 ms of liquid scintillator.

* Shielding: 15 cm steel.
* Outer Veto: plastic scintillator strips.

42
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Latests measurements of 0,

0.5 unknown until 2011. Huge progress in a few years.

A N A S
Double Chooz R
JHEP 1410, 086 (2014) . —e— single detector
Preliminary (Moriond) |—-—C}—| DC Il{?“? 913
Daya Bay L
PRL 115, 111802 (2015) boi |

(0.084:0.005)

RENO 5 2
Preliminary (arXiv:1511.05849) I—O—!
T2K : . ! : s -
PRD 91, 072010 (2015) P P ‘d'“'h":r";“‘}F bE‘P
Ami, >0 — —— —

2 | S | ;

o Published  Ama<? RN '
PR T T TR R HI R T R R T TR BT R
O preliminary 0 0.05 0.1 0.15 0.2 0.25
sin”20,,

A. Cabrera, FNAL seminar 03/25/2016



First glimpse of 6

* v, ~ V. depends on the mass hierarchy and CP-violating phase.

R L O e p (B — e S0 (2013) sin® (P sin” (A4 — 1A
oy T2K 1 a
“ 0.5 - ———— c0s(f43) sin(26;5 ) sin(26053 ) sin(26,3) x
05: : :FA(I—A) 08(f13) sin(26,5) sin(26,3) sin(26,3)
" - AmZ,>0 E x sin(d) sin(A) sin( AA)sin[(1 — A)A]
[E _ _ 7] Y ; i L s S 2 P ; .
: q; 8831; gxi ] L m cos(#y3) sin( 26,5 ) sin(2653 ) sin(26,3) x
-0.51- — Best fi = ! |
C PDG2012 1o range ] x cos(d) cos(A)sin(AA)sin[(1 — A)A]
=17 I s il i i ] {]‘2 0 e ) 5 e . B \
ORIl i, VU i + Ecw“(ﬂm)ﬁin“(i}f}m] sin“(AA),
“ 05k 1 [a= Am2,/Am2, T
B - == v
of = 4E A—o BN
! i Am3,
- Am3,<0 ]
-0.5 32 — .y . .
2 ] Critical input: Using the 8, from the
L G TR TR reactor experiments, the mass hierarchy
it S alae Bk and the CP-violating phase can be studied.
i
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3 neutrinos: mass hierarchy

2 squared-mass differences

But which is on top of which?

The Solar + KamLAND experiments show that the mass eigenstate v,

IS heavier than v,.

Which is the lightest neutrino? Two possibilities left:

Normal
mi
| "n.-’e
Y
| "-.-’,E
— | |

2
IH3 -

5
My~

2
!Hl —

atmospheric
~2x10eV?

. — ——
solar~7x102eV?2
-

Inverted

—
| solar~7x10%eV?

IE———

L 4
I

atmospheric
~2x107eV?

m?

R
—4m,-

2
__H'J'l

2
__}'.”3
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Future: & and mass hierarchy

« Both CP-violating phase and the mass hierarchy can be measured in a long-

baseline accelerator experiment.
* Need a long baseline and a broad-energy beam to disentangle CP violation

caused by matter effects (Earth is made only from matter) from the intrinsic CP
violation.

e

- 1300 km

& >
South Dakota Chicago
Underground Fermilab
Research SRS

Facility o
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