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Attendance

Up to four absences 
Send email notifications of all absences to 
shpattendance@columbia.edu.

Please, no cell phones

Please, ask questions!

Lecture materials
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ScienceHonorsProgram

Course Policies

mailto:shpattendance@columbia.edu
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Schedule

1. Introduction (Inês)

2. History of Particle Physics (José)

3. Special Relativity (José)

4. Quantum Mechanics (Inês)

5. Experimental Methods (Cris)

6. The Standard Model – Overview (Cris)

7. The Standard Model – Limitations (Cris)

8. Neutrinos – part I (José)

9. Neutrinos – part II (José)

10. LHC and Experiments (Inês)

11. The Higgs Boson and Beyond (Inês)

12. Particle Cosmology (Cris)
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Neutrinos in the Standard Model
● Only left-handed neutrinos (and right-handed 

antineutrinos) in the Standard Model.

● Initially implemented as massless particles.

– Neutrino oscillations show neutrinos have 
mass!

● Why neutrino masses are so different from the 
other fermions?

– Are neutrinos acquiring mass through the 
same mechanism (Higgs) or from 
something else?
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Neutrino oscillations (2-neutrino example)

● Two flavor approximation:

 Transition probability (derivation in blackboard):

 Survival probability:

● Neutrino oscillation implies 
neutrinos are massive and 
non-degenerated.

Controlled by 
the experiment

Flavor eigenstates Mass eigenstates

● Consequence of neutrino mixing (quantum superposition, as in Schrödinger's cat): 
the neutrinos that interact are not the same as the neutrinos that propagate.
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3 neutrino mixing

• Flavor eigenstates (e, μ, τ) ≠ mass eigenstates (1, 2, 3).

• Related by Pontecorvo-Maki-Nakagawa-Sakata mixing matrix:

3 neutrinos → 3 angles (θ12, θ23, θ13) + 1 CP-violating phase (δ).

PMNS matrix: U

(
νe

νμ

ντ
)=(

1
c23 s23

−s23 c23
)(

c13 s13 e
−iδ

1
−s13 e

iδ c13
)(

c12 s12

−s12 c12

1
)(

ν1

ν2

ν3
)

c ij=cosθij , sij=sin θij

Atmospheric &
Long-baseline accelerator 

experiments

Solar &
KamLAND

experiments

• CP violation only possible if all three angles are not zero. 

Reactor & Long-baseline 
accelerator experiments

→ m
1

→ m
2

→ m
3
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Measurement of θ
12

 and Δm2
21
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Solar experiments
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Solar neutrinos: pp chain
● 98.4% of Sun's fusion energy.
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Solar neutrinos: CNO cycle
● 1.6% of Sun's fusion energy.
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Solar neutrinos: energy spectrum
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Homestake experiment
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Homestake experiment
● Detection of solar neutrinos using 

the reaction:

● Ratio of observed to predicted:

● Missing neutrinos!
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Kamiokande
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Kamiokande
● Detection of solar neutrinos using 

the reaction:

● Ratio of observed to predicted:

● Missing neutrinos again!
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Super-Kamiokande
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Super-Kamiokande
● Detection of solar neutrinos using 

the reaction:

● Ratio of observed to predicted:

● Improved result over Kamiokande, 
neutrinos still missing!
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Super-Kamiokande
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Super-Kamiokande
● NEUTRINOGRAPHY of the Sun. 500 days exposure!
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SNO
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SNO
● Detection of solar neutrinos using 

the reaction:

● Ratio of observed to predicted:
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SNO
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KamLAND
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KamLAND
● Detection of reactor neutrinos using the inverse beta-decay reaction: 
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Solar + KamLAND results
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Measurement of θ
23

 and Δm2
atm
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Atmospheric neutrinos
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Super-Kamiokande results
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IceCube
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Accelerator neutrinos
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T2K & MINOS experiments
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T2K & MINOS experiments
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SK (atm) & T2K & MINOS
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NOvA
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Measurement of θ
13
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Measurement of θ13 with reactors

• For baselines of ~ 1 km, the probability can be approximated by:

E = 4 
MeV
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Measurement of θ13 with two-detector reactor experiments

● Antineutrinos detected by inverse β-decay:
on Gd-loaded liquid scintillator calorimeters.

● Reactor prediction and the antineutrino detection systematics can be reduced if two 
identical detectors, one near and one far from the reactors, are built.
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Double Chooz: a two-detector experiment

EDF’s Chooz 
nuclear power 
plant (Ardennes, 
France)

Near Detector

L ~ 400 m

~ 300 /day

120 mwe

December 2014

Far Detector

L ~ 1050 m

~ 40 /day

300 mwe

April 2011

Chooz-B reactors

PWR N4s

2 × 4.25 GWth

~ 1021 /s

100%  e
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Electron antineutrino detection

Inverse Beta Decay (IBD):

● Reaction threshold: E ≥ 1.806 MeV.

● Disappearance experiment.

● Well known cross-section (0.2%).

● Coincidence of 2 signals: background 
suppression.

Prompt signal:

● Positron kinetic energy + ’s from annihilation.

● Eprompt ≈ E – 0.782 MeV

● Eprompt ~ 1 – 9 MeV

Delayed signal:

● ’s from radiative neutron capture.

● Gd: ΔT ~ 30 μs, Edelayed ~ 8 MeV.

● H: ΔT ~ 200 μs, Edelayed = 2.22 MeV.
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7m 

7m
 

The Double Chooz Far Detector

Inner Detector:

• Neutrino Target: acrylic vessel (8 mm) with 
10.3 m3 Gd-loaded (1 g/l) liquid scintillator.

• Gamma-Catcher: acrylic (12 mm) vessel with 
22.5 m3 of liquid scintillator.

• Buffer: stainless steel (3 mm) vessel 
supporting 390 10” PMTs, with 110 m3 of non-
scintillating mineral oil.

Outer Detector:

• Inner Veto: steel (10 mm) vessel supporting 
78 8” PMTs, with 90 m3 of liquid scintillator.

• Shielding: 15 cm steel.

• Outer Veto: plastic scintillator strips.

© Imag’In IRFU
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Latests measurements of θ13 

θ13 unknown until 2011. Huge progress in a few years.

A. Cabrera, FNAL seminar 03/25/2016
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First glimpse of δ 
• →e depends on the mass hierarchy and CP-violating phase.

Critical input: Using the θ13 from the 
reactor experiments, the mass hierarchy 
and the CP-violating phase can be studied.

T2K

Phys. Rev. Lett. 112 (2014) 061802



46

3 neutrinos: mass hierarchy
● 2 squared-mass differences

● But which is on top of which? 

● The Solar + KamLAND experiments show that the mass eigenstate  
is heavier than 

● Which is the lightest neutrino? Two possibilities left:

Normal Inverted
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Future: δ and mass hierarchy
● Both CP-violating phase and the mass hierarchy can be measured in a long-

baseline accelerator experiment.
● Need a long baseline and a broad-energy beam to disentangle CP violation 

caused by matter effects (Earth is made only from matter) from the intrinsic CP 
violation.

Operation expected by 2025.
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