

The on-going
programme

3-family oscillation matrix (Pontecorvo, Maki, Nakagawa, Sakata)

S = sine c = cosine

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- δ CP violation phase.
- θ_{12} drives SOLAR oscillations: $\sin^2 \theta_{12} = 0.32^{+0.05}_{-0.04}$ (+- 16%)
- θ_{23} drives ATMOSPHERIC oscillations: $\sin^2 \theta_{23} = 0.50^{+0.13}_{-0.12}$ (+-18%)
- θ_{13} the MISSING link ! $\sin^2 \theta_{13} < 0.033$ Set by a reactor experiment: CHOOZ.

Present status of the mixing matrix

$$U_{CKM} \rightarrow \begin{bmatrix} 1.0 & 0.2 & 0.001 \\ 0.2 & 1.0 & 0.01 \\ 0.001 & 0.01 & 1.0 \end{bmatrix}$$

$$U_{MNS} \rightarrow \begin{bmatrix} 0.8 & 0.5 & <0.3 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{bmatrix}$$

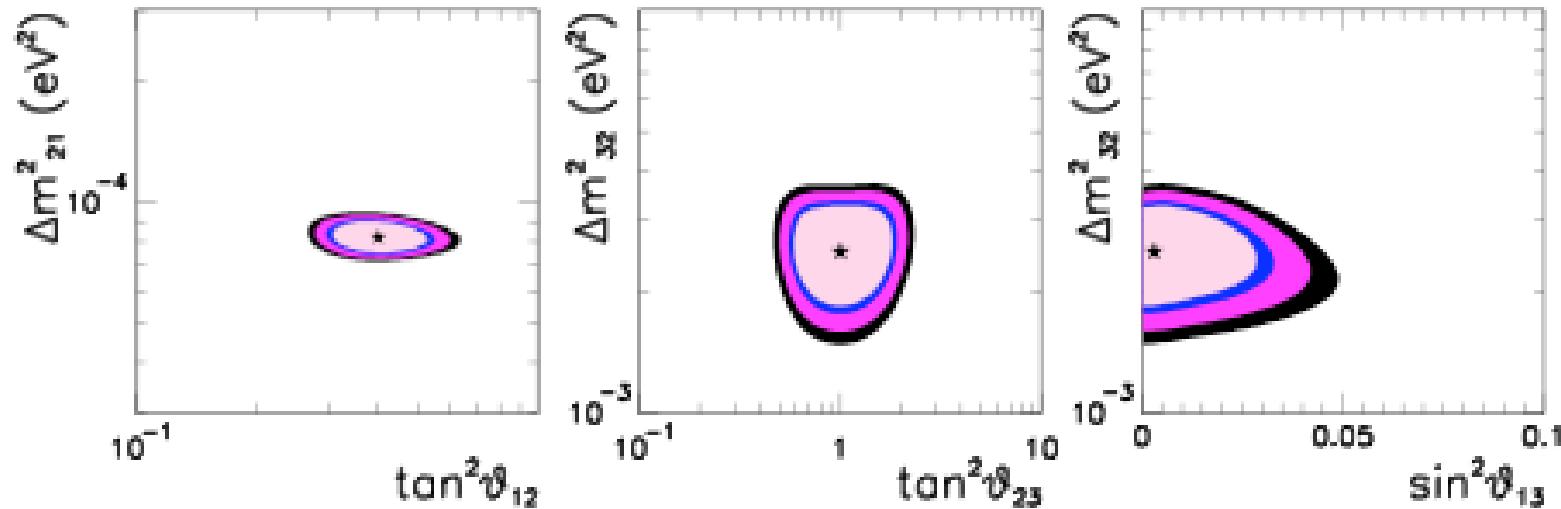
The quark mixing matrix

- is mostly diagonal
- Has a definite hierarchy
- Is Symmetrical

Why is the neutrino matrix so different?

- Terms are of the same order
- Except for one
- No definite hierarchy

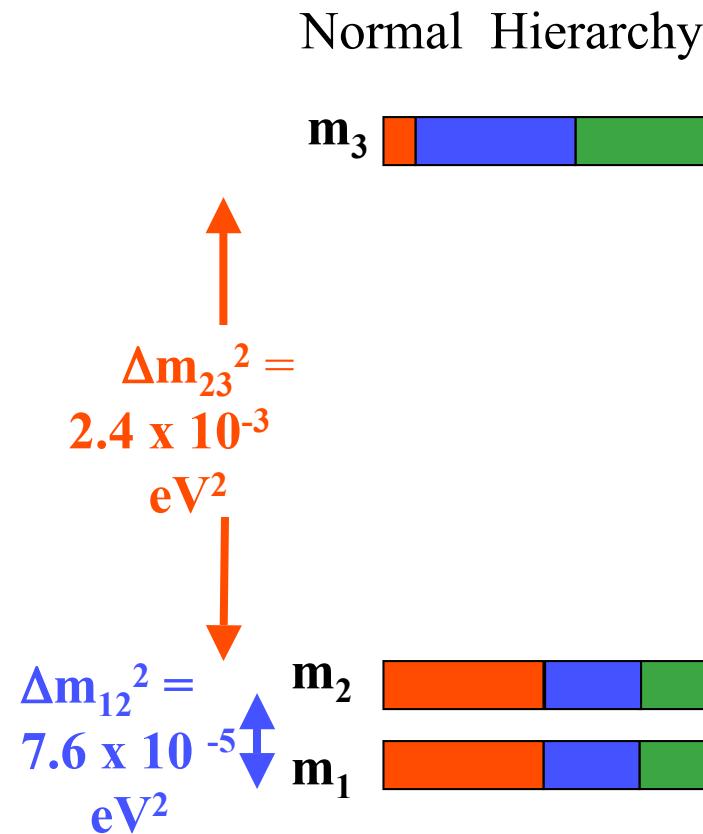
Angles and their meanings



- $\sin^2 \theta_{13}$: amount of ν_e in ν_3
- $\tan^2 \theta_{12}$ Ratio of ν_e in ν_2 to ν_e in ν_1 < 1 So more in ν_1
- $\tan^2 \theta_{23}$: Ratio ν_μ to ν_τ in ν_3 . If $\theta_{23} = \pi/4$ Maximal mixing equal amounts.

Mass hierarchy

Sign of Δm_{23}^2

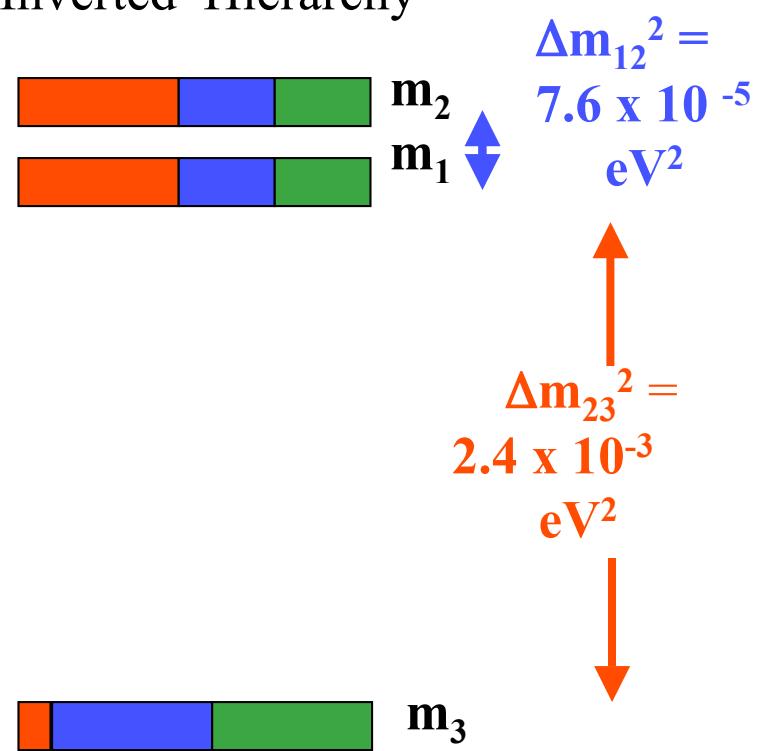


ν_e

ν_μ

ν_τ

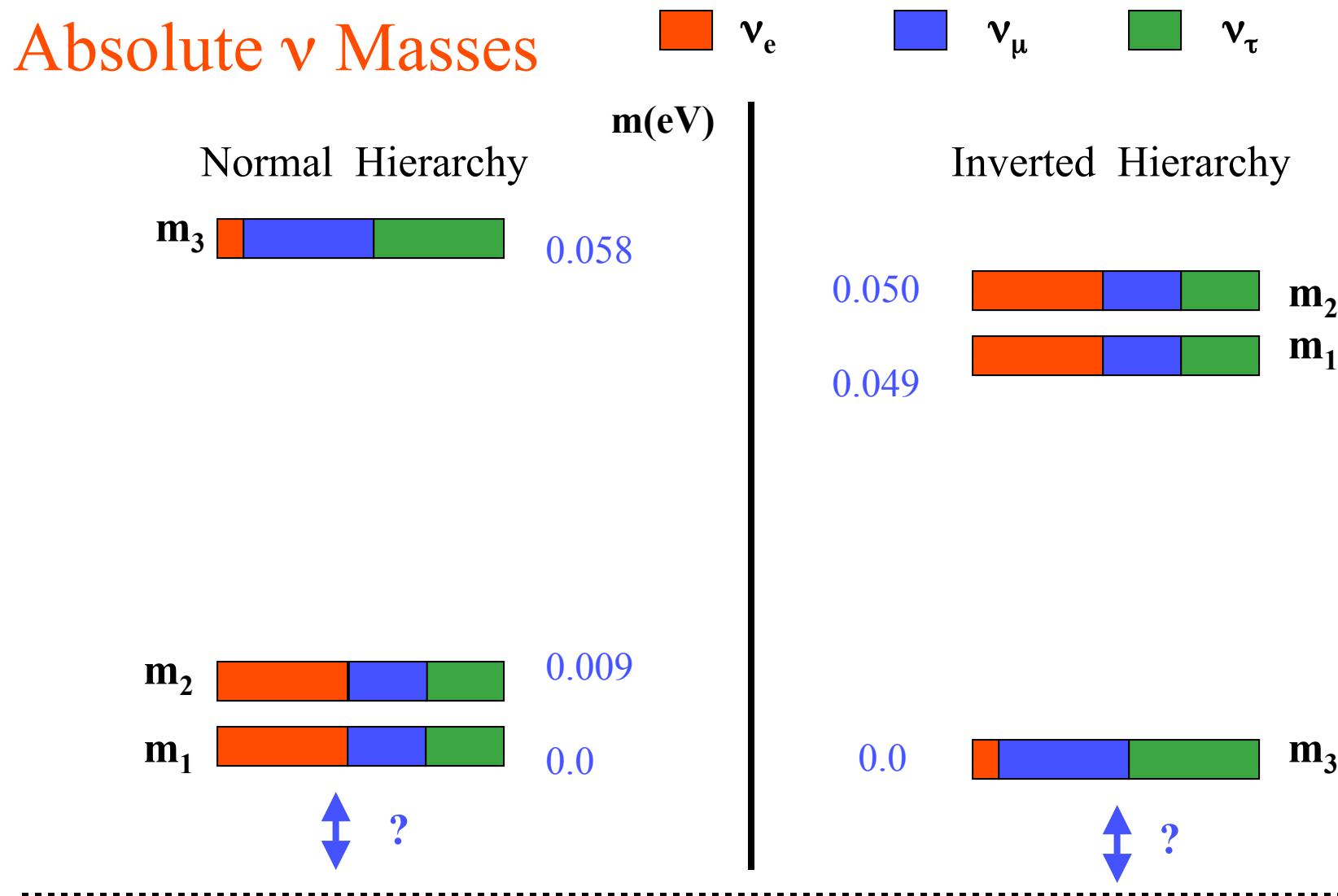
Inverted Hierarchy



Oscillations only tell us about DIFFERENCES in masses

Not the ABSOLUTE mass scale: Direct measurements or Double β decay

Absolute ν Masses



We DO have a LOWER LIMIT on at least one neutrino: $(2.4 \times 10^{-3})^{1/2} > 0.05$ eV

3-v oscillation formula: $\nu_\alpha \rightarrow \nu_\beta$. I

$$\begin{aligned}
 P_{\alpha\beta} &= | \langle \nu_\beta | \nu_\alpha(t) \rangle |^2 \\
 | \langle \nu_\beta | \nu_\alpha(t) \rangle |^2 &= | \left(\sum_{j=1}^3 U_{\beta j} \langle \nu_j | \right) \left(\sum_{i=1}^3 U_{\alpha i}^* e^{-im_i^2 L/2E} | \nu_i \rangle \right) |^2 \\
 &= | \sum_{i=1}^3 U_{\alpha i}^* U_{\beta i} e^{-im_i^2 L/2E} |^2 \\
 &= \left(\sum_{j=1}^3 U_{\alpha j} U_{\beta j}^* e^{im_j^2 L/2E} \right) \left(\sum_{i=1}^3 U_{\alpha i}^* U_{\beta i} e^{-im_i^2 L/2E} \right) \\
 P_{\alpha\beta} &= \delta_{\alpha\beta} - \sum_{i>j} \sum_{j=1}^3 U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \sin^2 \frac{(m_i^2 - m_j^2)L}{4E}
 \end{aligned}$$

3-ν oscillation formula: $\nu_\mu \rightarrow \nu_\tau$. II

Assume $\delta_{CP} = 0$ for simplicity. $U_{ij} = U_{ij}^*$

With $i > j$

$$P_{\mu\tau} = -4 \sum_{i>j} U_{\mu i} U_{\tau i} U_{\mu 1} U_{\tau 1} \sin^2 \frac{(m_i^2 - m_1^2)L}{4E} \quad (j=1)$$

$$-4 \sum_{i>j} U_{\mu i} U_{\tau i} U_{\mu 2} U_{\tau 2} \sin^2 \frac{(m_i^2 - m_2^2)L}{4E} \quad (j=2)$$

$$-4 \sum_{i>j} U_{\mu i} U_{\tau i} U_{\mu 3} U_{\tau 3} \sin^2 \frac{(m_i^2 - m_3^2)L}{4E} \quad (j=3)$$

3-ν oscillation formula: $\nu_\mu \rightarrow \nu_\tau$. II

With

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

$$P_{\mu\tau} = -4U_{\mu 1}U_{\tau 1}[U_{\mu 2}U_{\tau 2} \sin^2 \frac{\Delta m_{21}^2 L}{4E} + U_{\mu 3}U_{\tau 3} \sin^2 \frac{\Delta m_{31}^2 L}{4E}] - 4U_{\mu 2}U_{\tau 2}[U_{\mu 3}U_{\tau 3} \sin^2 \frac{\Delta m_{32}^2 L}{4E}]$$

The solar term is quite small

For atmospheric neutrino parameters

$$\frac{\Delta m_{21}^2 L}{4E} = 1.27 \frac{7.9 \times 10^{-5} \text{ km}}{4 \times 1 \text{ GeV}} = 0.025$$

After squaring, we can neglect it

Since Δm_{21}^2 (solar) $\ll \Delta m_{32}^2$ or Δm_{31}^2 (atmos)

We can also set

$$7.9 \times 10^{-5} \ll 2.4 \times 10^{-3}$$

$$\Delta m_{31}^2 = \Delta m_{32}^2$$

Why we can treat oscillations as a 2 ν phenomenon sometimes.

$$P_{\mu\tau} = -4U_{\mu 3}U_{\tau 3}[U_{\mu 1}U_{\tau 1} + U_{\mu 2}U_{\tau 2}] \sin^2 \frac{\Delta m_{32}^2 L}{4E}$$

Using a Unitarity relation:

$$U_{\mu 1}U_{\tau 1} + U_{\mu 2}U_{\tau 2} + U_{\mu 3}U_{\tau 3} = 0$$

$$\begin{aligned} P_{\mu\tau} &= 4(U_{\mu 3}U_{\tau 3})^2 \sin^2 \frac{\Delta m_{32}^2 L}{4E} \\ &= 4(s_{23}c_{13} \cdot c_{23}c_{13})^2 \sin^2 \frac{\Delta m_{32}^2 L}{4E} \\ &= (2s_{23}c_{23})^2 c_{13}^2 \sin^2 \frac{\Delta m_{32}^2 L}{4E} \\ &= \sin^2 2\theta_{23} c_{13}^2 \sin^2 \frac{\Delta m_{32}^2 L}{4E} \end{aligned}$$

and $c_{13} \sim 1.0$

Same formula as starting with
2 neutrinos only

Every observation fits this scenario

EXCEPT.....

LSND

- 800 MeV protons in a dump.
- Positive Pions and then muons coming to rest
- and then decaying

- Look for $\bar{\nu}_\mu$ to $\bar{\nu}_e$ oscillations

- Through the reaction: $\bar{\nu}_e + p \rightarrow e^+ + n$

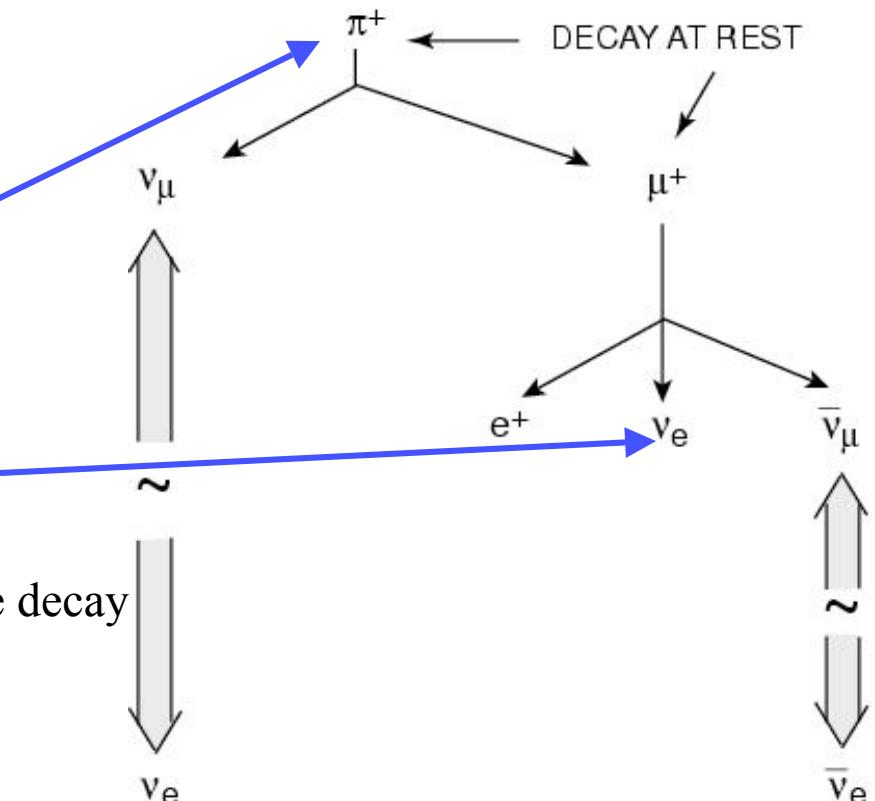
- Observe e^+ + photons from neutron capture in the scintillator

- Delayed coincidence

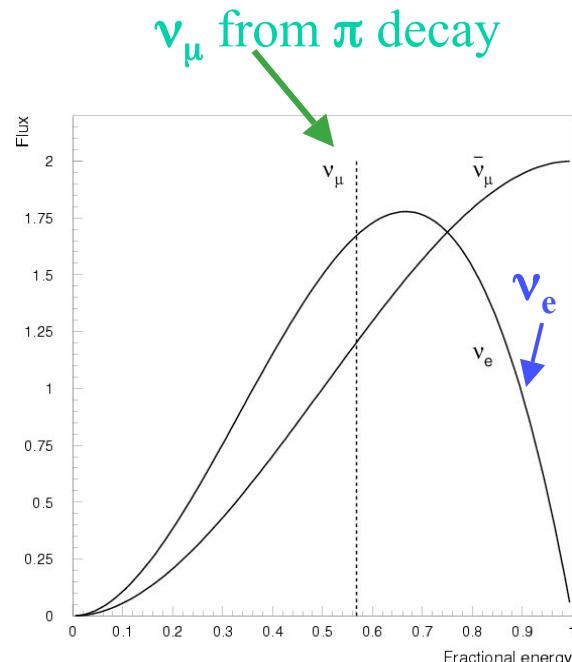
- Why not $\bar{\nu}_e$ from $\pi^- \rightarrow \mu^- \rightarrow \bar{\nu}_e$ decay chain ?

- π^-/π^+ production $1/8$
- π^- coming to rest in dump captured before decay
- Only decays in flight contribute $1/20$
- Most μ^- captured before decay $1/8$

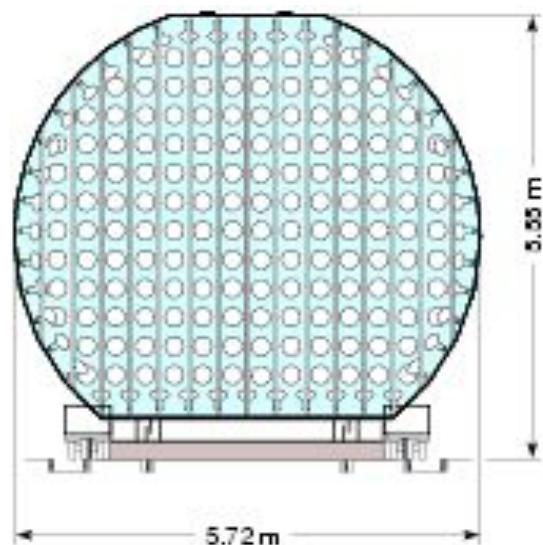
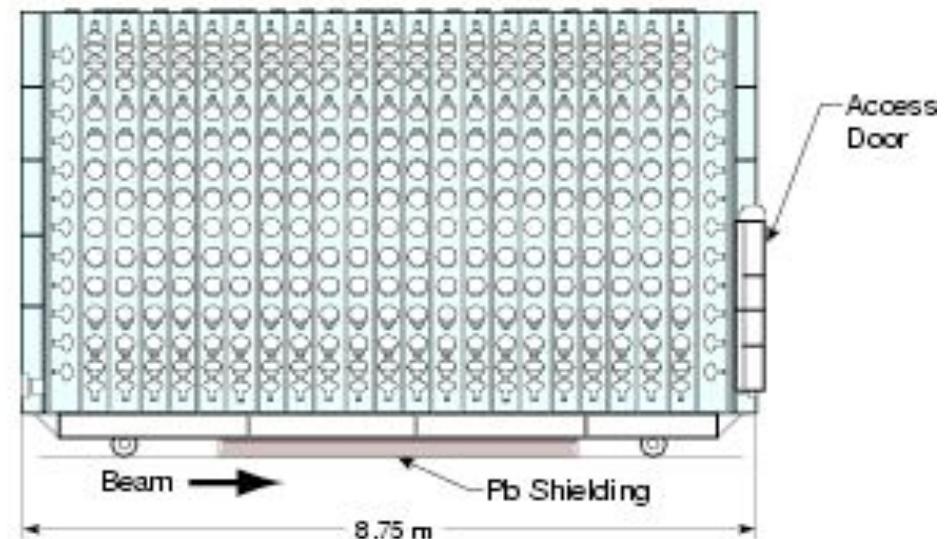
- Overall reduction 7.5×10^{-4} .



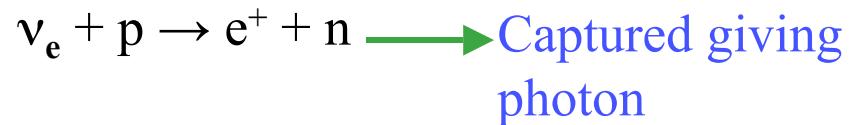
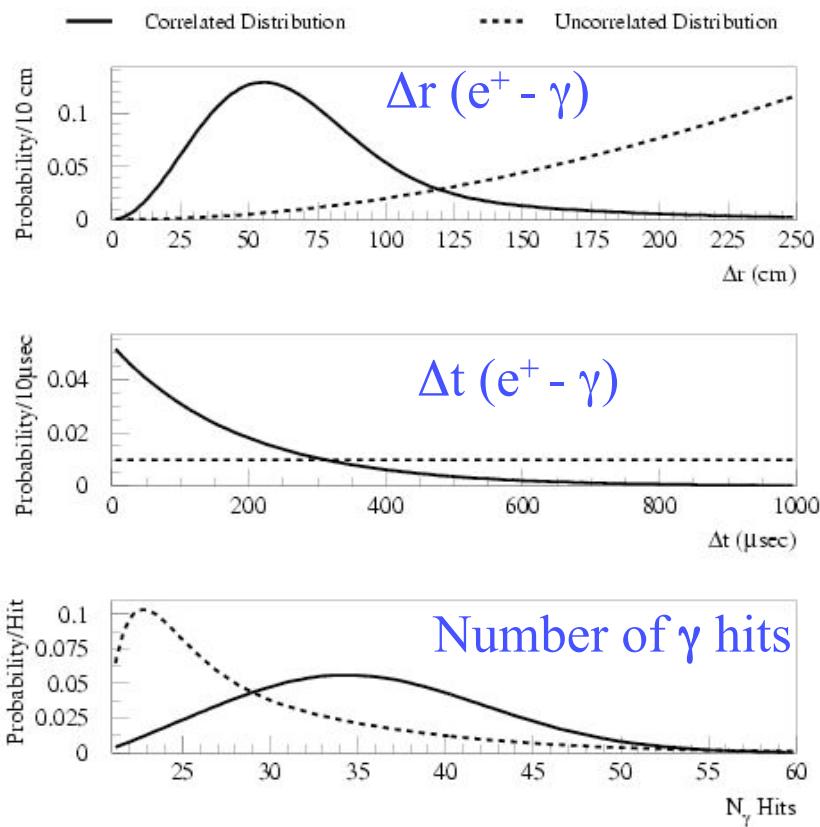
LSND spectrum and detector



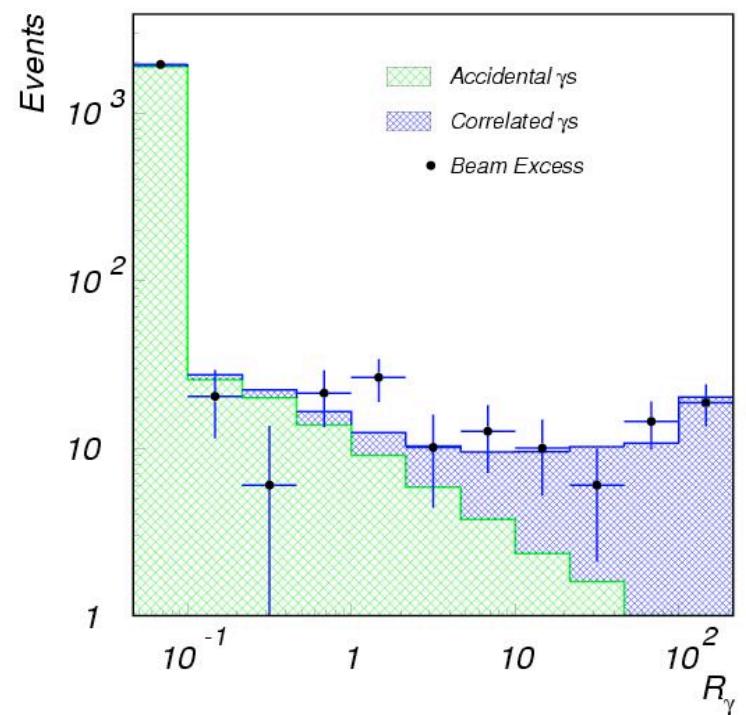
- 30m from dump
- 167 tons of liquid scintillator
- 1220 pmt + 292 veto
- Cerenkov + scintillator light



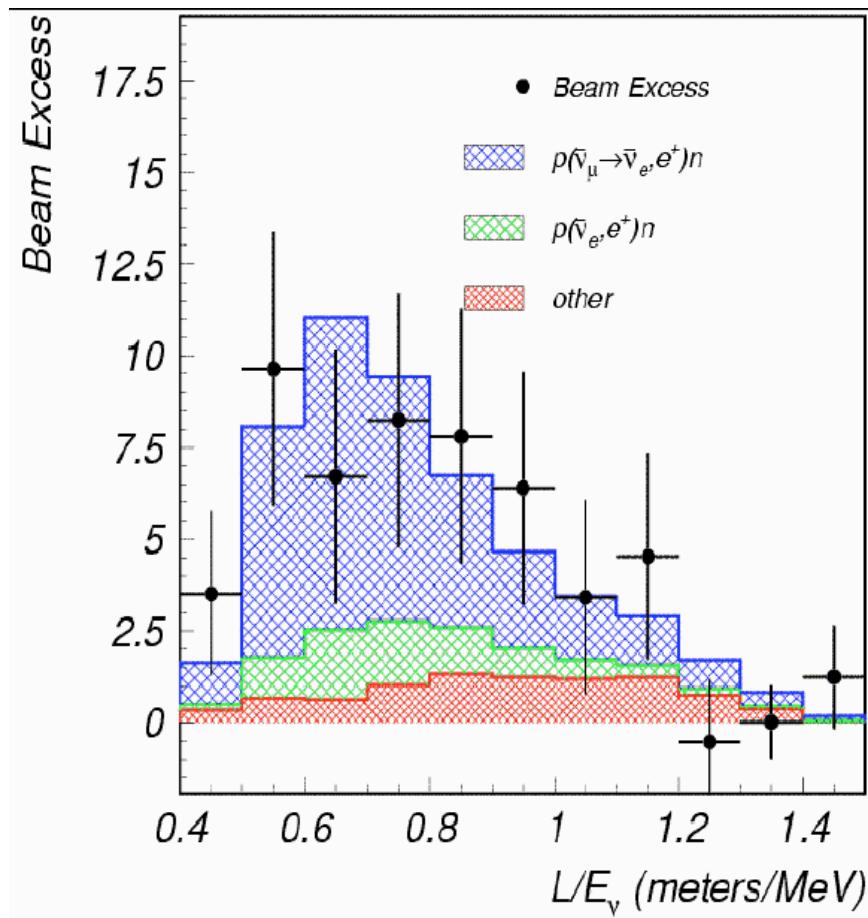
Discriminating variables: Likelihood



Likelihood ratio



LSND result

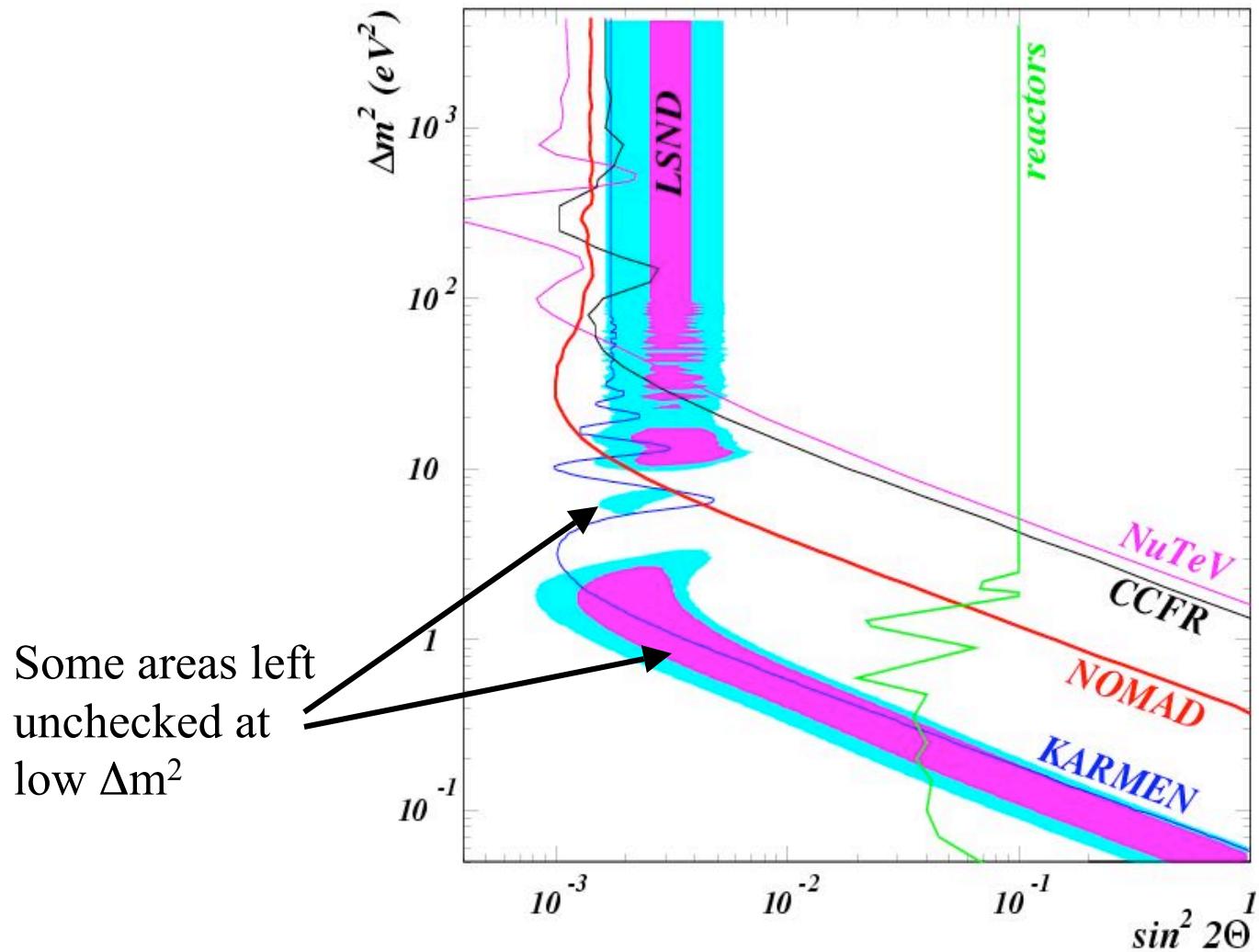


Excess of $\bar{\nu}_e$ events in a $\bar{\nu}_\mu$ beam,
 $87.9 \pm 22.4 \pm 6.0$ (3.8σ)
which can be interpreted as $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillations

0.26% oscillation probability.

L/E ~ 1

Exclusion by other experiments



Some areas left
unchecked at Δm^2

Notice the
LARGE Δm^2 .

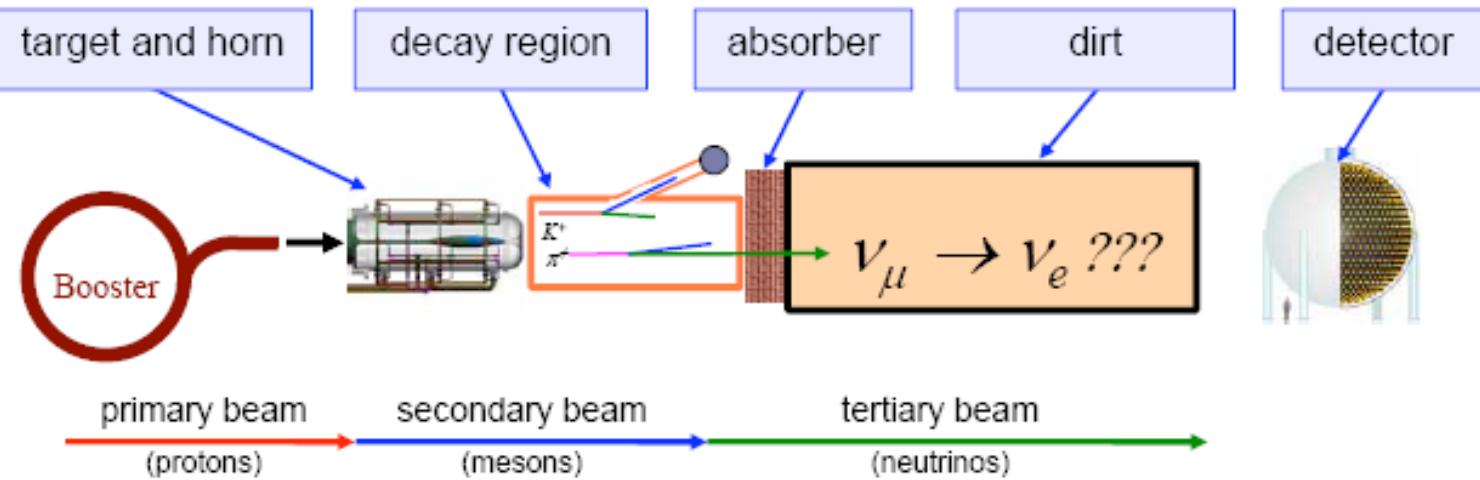
Incompatible with
Either atmospheric
Or solar Δm^2 .

Why is this important?

- The mass region does NOT fit with any of the other two.
- Three mass differences imply that there should be at **least one more neutrino.**
- But LEP measured just **2.994 ± 0.012** neutrino types from Z^0 width.
- $\Gamma_{\text{inv}} = \Gamma_{\text{tot}} - \Gamma_{\text{vis}} = 498 \text{ MeV}$
- $\Gamma_{\nu\nu} = 165 \text{ MeV} \rightarrow N_\nu \sim 3$
- So it means that this potential extra neutrino **DOES NOT** couple to the Z^0 .
- It must be **STERILE**.
- Must be checked.

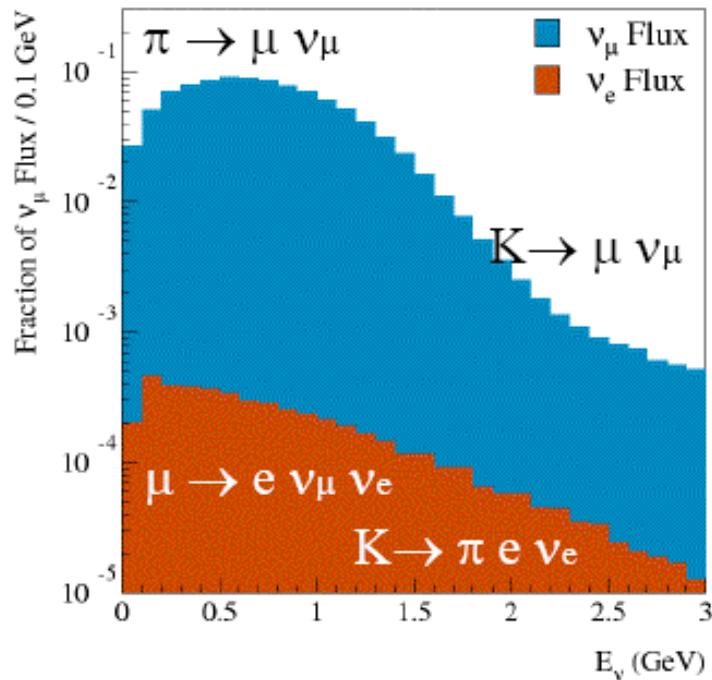
MiniBooNE

- Keep same L/E as LSND $\sim 1.0 \rightarrow 500\text{m}$ and 500 MeV
- Look for ν_e appearance in ν_μ beam
(assuming CP invariance same as $\bar{\nu}_e$ appearance in a $\bar{\nu}_\mu$ beam.)
- T



The MiniBooNE neutrino beam spectrum from the Fermilab 8 GeV booster

Neutrino Flux from GEANT4 Simulation



$\nu_e/\nu_\mu = 0.5\%$
Antineutrino content: 6%

“Intrinsic” $\nu_e + \bar{\nu}_e$ sources:

$\mu^+ \rightarrow e^+ \bar{\nu}_\mu \nu_e$ (52%)

$K^+ \rightarrow \pi^0 e^+ \bar{\nu}_e$ (29%)

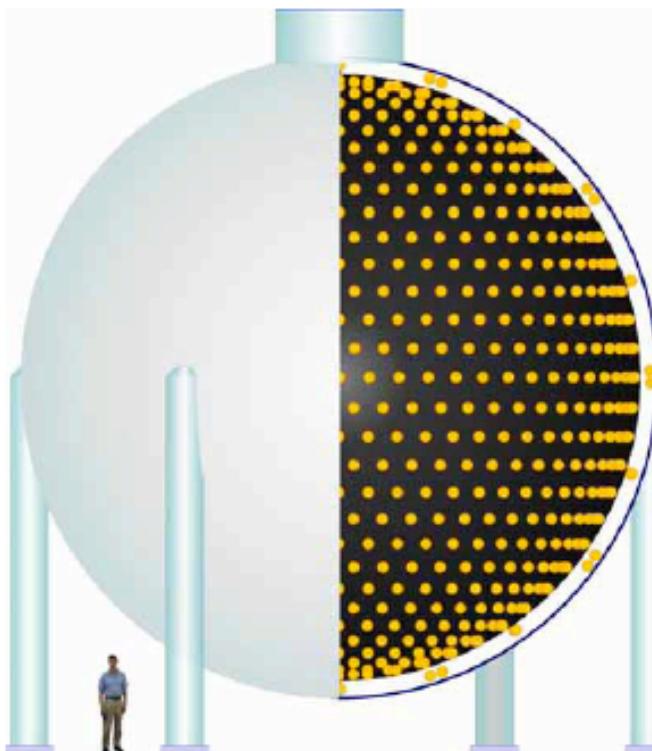
$K^0 \rightarrow \pi^- e^+ \bar{\nu}_e$ (14%)

Other (5%)

Irreducible background

Accumulated:
 5×10^{20} Protons on target

The MiniBooNE Detector



- 541 meters downstream of target
- 3 meter overburden
- 12 meter diameter sphere
(10 meter “fiducial” volume)
- Filled with 800 tons
of pure mineral oil (CH_2)

Muons:

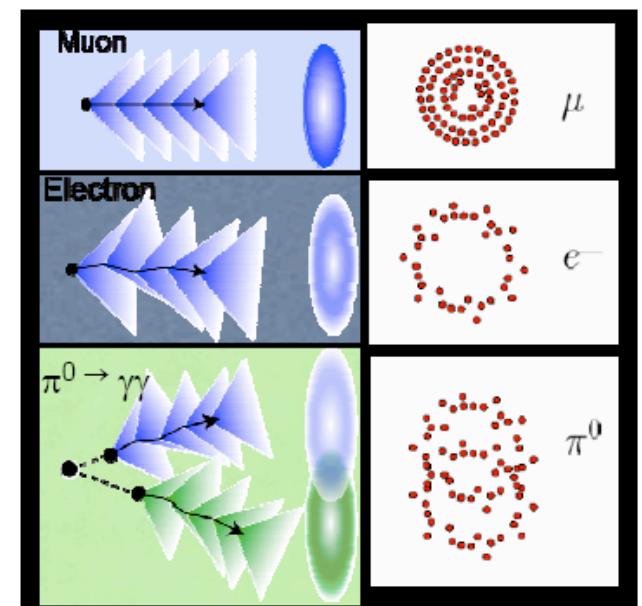
Produced in most CC events.
Usually 2 subevent or exiting.

Electrons:

Tag for $\nu_\mu \rightarrow \nu_e$ CCQE signal.
1 subevent

NC π^0 s:

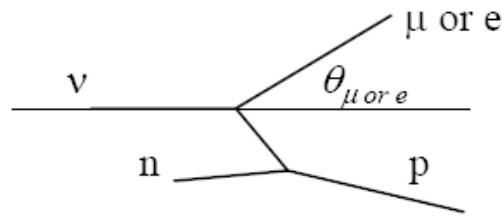
Can form a background if one
photon is weak or exits tank.
In NC case, 1 subevent.



Neutrino interactions

Focus on quasi-elastic interactions

CCQE $\nu_\mu + n \rightarrow \mu^- + p$
(Charged Current Quasi-Elastic)
39% of total



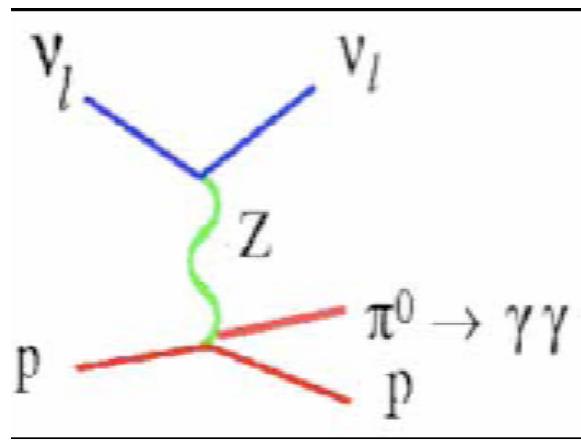
$$E_\nu^{QE} = \frac{1}{2} \frac{2M_p E_\ell - m_\ell^2}{M_p - E_\ell + \sqrt{(E_\ell^2 - m_\ell^2) \cos \theta_\ell}}$$

Reconstructed from:
Scattering angle
Visible energy (E_{visible})

To claim any effect must:

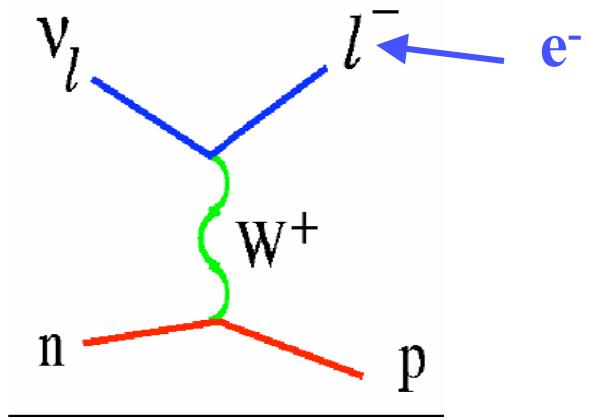
- Understand neutrino cross sections: especially difficult at low energy due to Fermi motion, nuclear reinteractions, Pauli blocking,....
- Intrinsic ν_e in the beam

Backgrounds



π^0 from NC

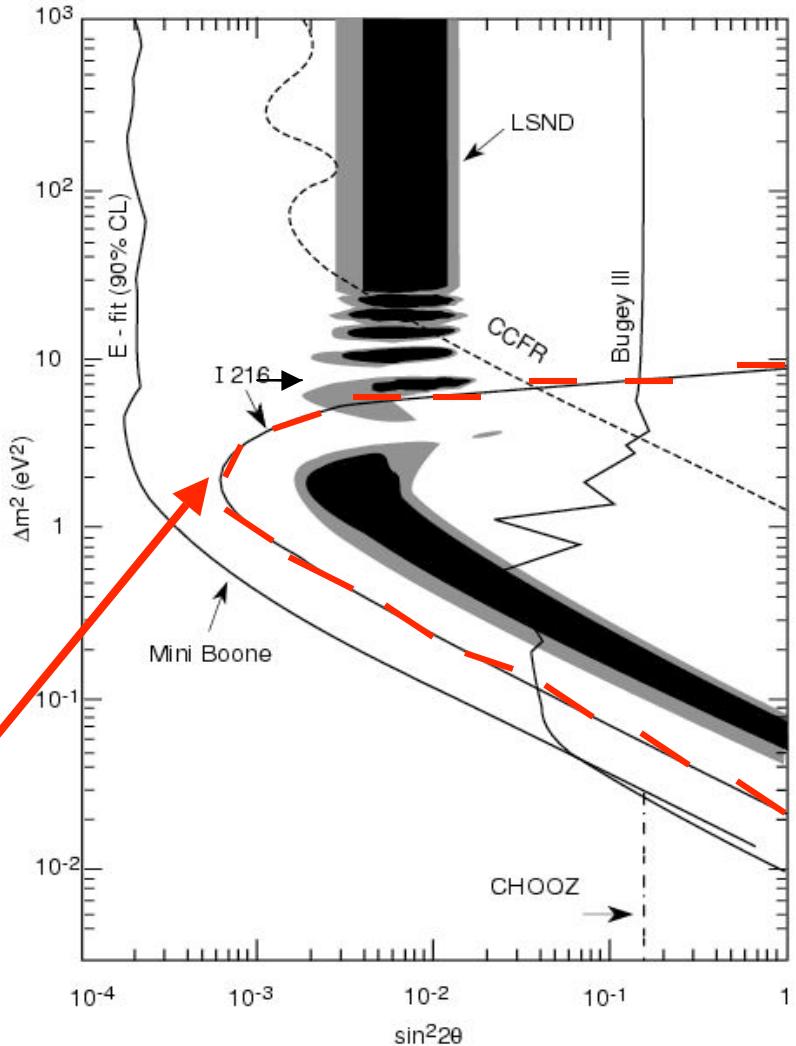
99% recognized as two showers



Intrinsic ν_e in the beam

I216

- CERN experiment to check LSND
- ν_e appearance in a ν_μ beam.
- Difference from MinBooNE:
- Use a NEAR detector to know precisely the intrinsic ν_e content of the beam.
- Compare spectra at NEAR and FAR detectors.
- **Sensitivity**
- Experiment was NOT approved.



MiniBooNE: Opening the box

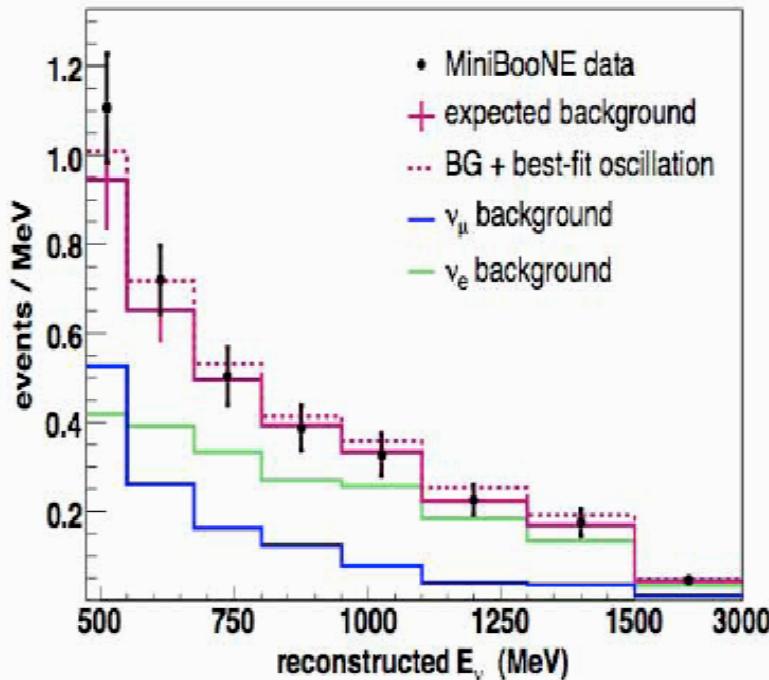
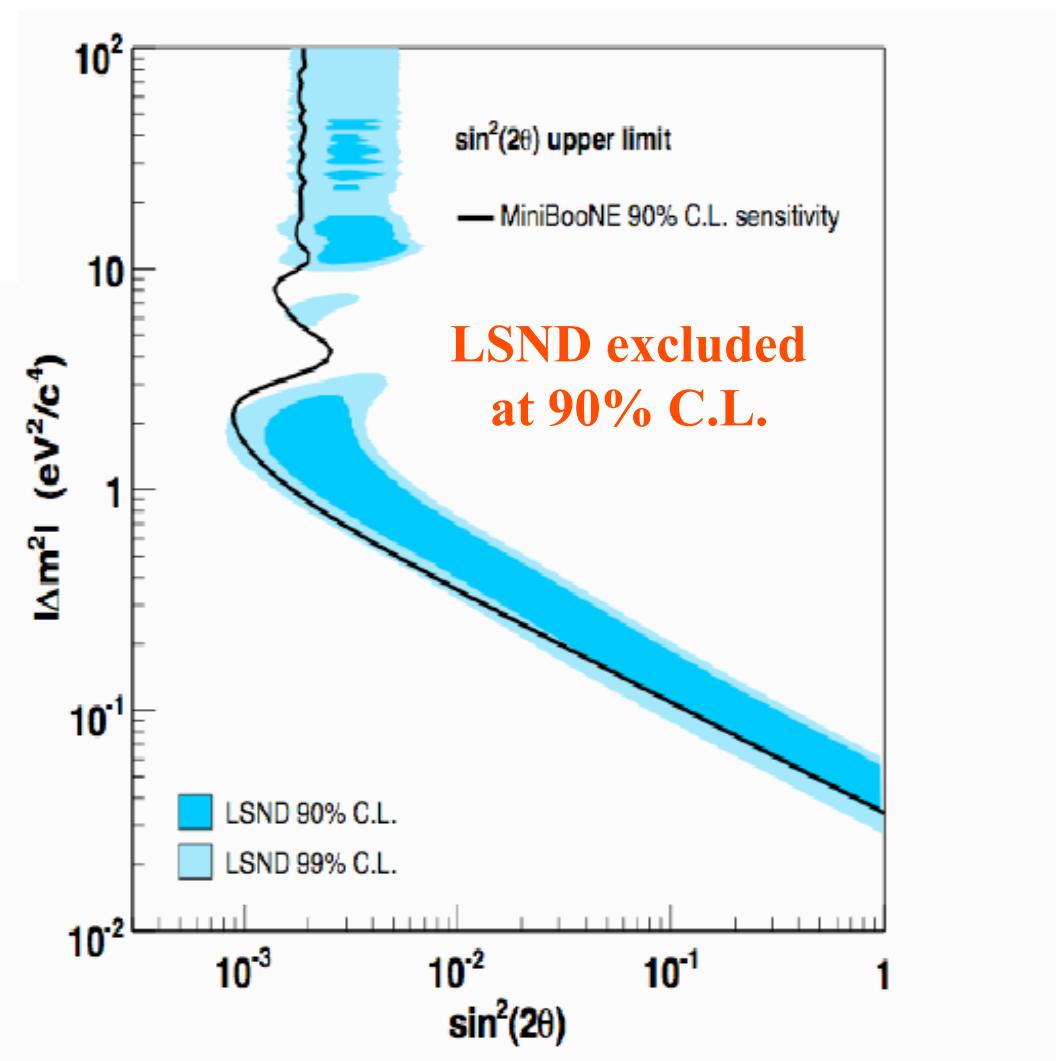
Limited oscillation analysis to $E_\nu > 475$ MeV
(more background at lower energies)

Observe 380 events

Expected background:

358 ± 19 (stat) ± 35 (syst)

No oscillation signal.



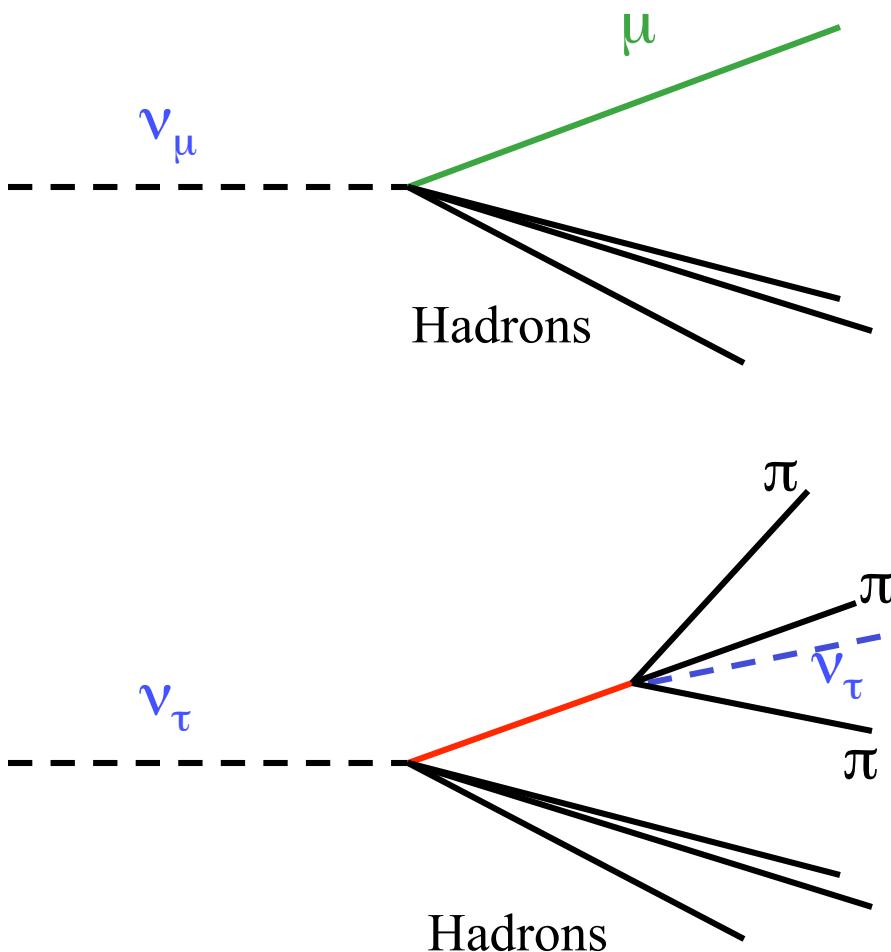
What's needed next?

- Confirm that ν_μ disappearance is really a $\nu_\mu - \nu_\tau$ oscillation.
Accelerators.
- What is the absolute neutrino mass scale?
 β and $\beta\beta$ decay, cosmology
- Are neutrinos their own antiparticle? $\beta\beta$ decay
- Determine θ_{13} .
Reactors, accelerators.
- Determine the mass hierarchy.
Accelerators.
- Any CP violation in the neutrino sector?
Accelerators.

Current programme

- Accelerator experiments: ν_τ appearance, θ_{13} , mass hierarchy , CP (?)
 - MINOS continuing
 - NOvA
 - T2K
- Reactor experiments: θ_{13} . Double Chooz, Daya Bay.
- Beta decay
- Double-beta decay
- Cosmology

ν_μ CC vs ν_τ CC



ν_μ CC Interaction

Muon

Hadrons produced close to each other
Back to back with muon

ν_τ CC Interaction

τ decay to hadrons ($\pi\nu_\tau, \pi\pi\nu_\tau, \dots$)

65% Branching ratio

No Muon

They look like **NC events.**
and

Hadrons produced at main vertex
+ hadrons from τ decay

--->**Spherically symmetric** event
Secondary vertex

MINOS ν_τ appearance

- MINOS is doing a ν_μ disappearance experiment.
- Can it look for ν_τ 's?
- Detector is too coarse to identify τ 's produced in a ν_τ CC interaction by looking for secondary vertices or decay kinks.
- But: Use hadronic τ decays: **No muon in final state.**
- These decays look like neutral currents (NC) events.
- So if $\nu_\mu \rightarrow \nu_\tau$ expect **an increase in NC-like events**:
 - NC/CC $>$ Expected NC/CC from standard ν_μ interactions.
 - But NC + CC **SAME** as for standard ν_μ .
- If $\nu_\mu \rightarrow$ **sterile neutrino**, the sterile does not interact at all.
 - (NC + CC) $<$ for ν_μ and
 - NC/CC remains the **SAME** as for ν_μ .

No result yet from MINOS

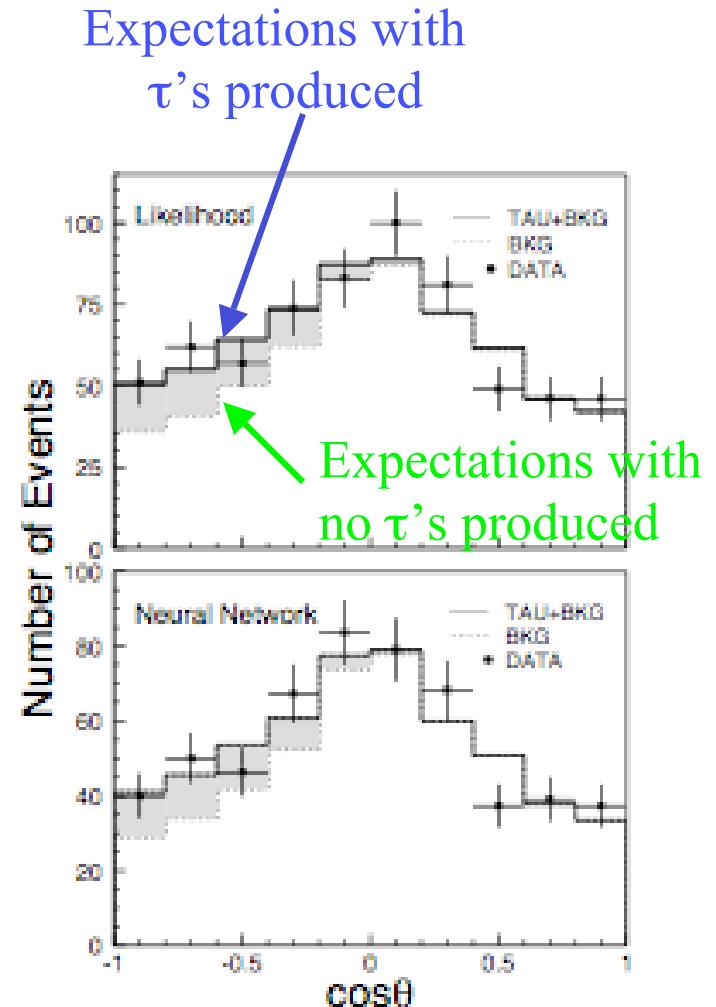
SuperKamiokande ν_τ appearance

- SK detects atmospheric ν_μ and ν_e
- Can it look for ν_τ 's?
- Detector is too coarse to identify τ 's produced in a ν_τ CC interaction by looking for secondary vertices or decay kinks.
- But: Use hadronic τ decays:
 - No muon in final state.
- Use the fact that they are spherically symmetric.
- Select events with
 - No muon
 - Many rings
 - Distributed spherically symmetric
- Use likelihoods or neural network.

Expect 78 ± 26 τ events for $\Delta m^2 = 2.4 \times 10^{-3}$ eV 2

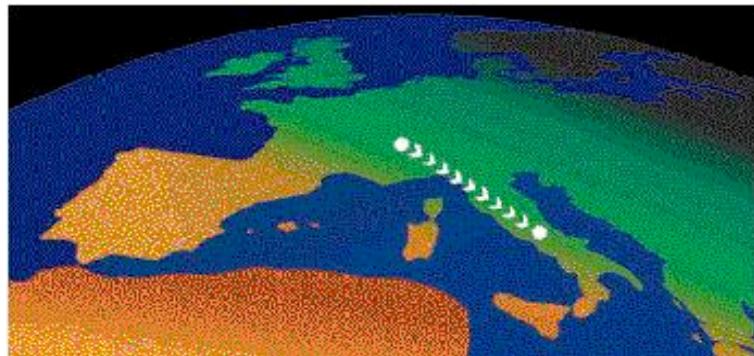
Observe $136 \pm 48(\text{stat})_{-32}^{+15}(\text{syst})$

Disfavours NO τ appearance by 2.4 σ



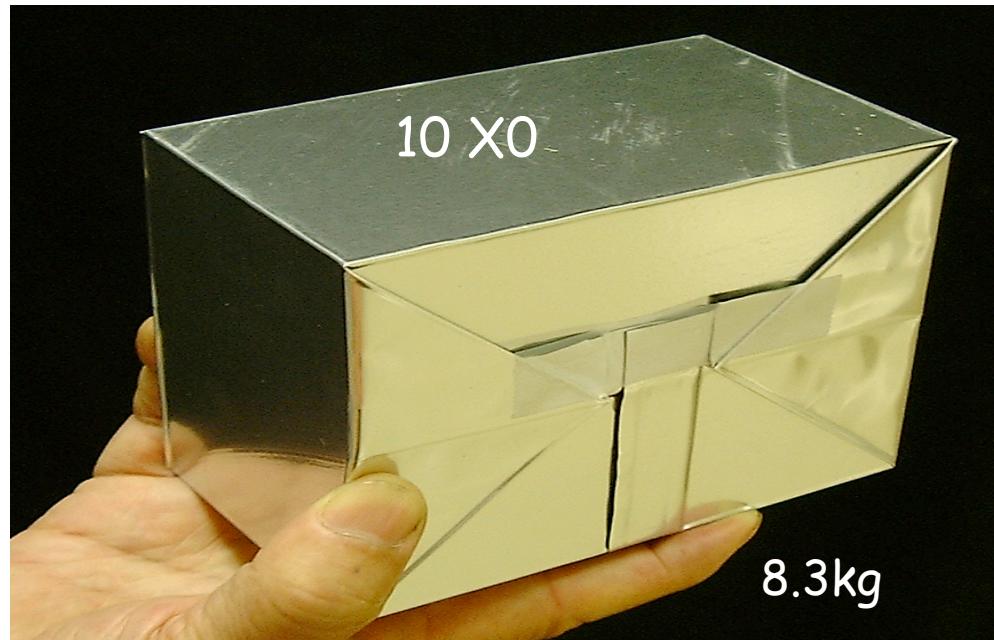
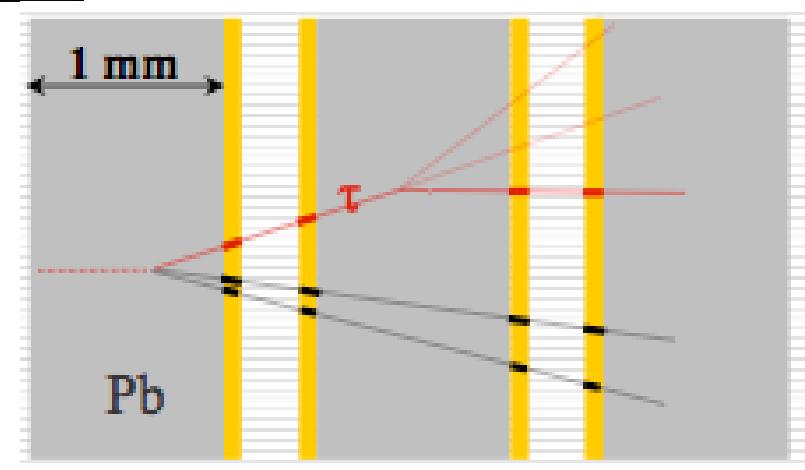
OPERA ν_τ appearance: the definitive experiment

- Atmospheric ν_μ disappearance occurs at $L/E \sim (\text{GeV})/(\sim 1000\text{km})$
- Distance from CERN to Gran Sasso Lab (LNGS) in a road tunnel in Italy = 732km
- Send a ν_μ beam (~ 20 GeV) from CERN to LNGS.



- Search for ν_τ appearance.
- Look for events with **SECONDARY VERTICES OR KINKS**
- Using photographic emulsions

The lead-emulsion brick



Le détecteur : 2 super-modules

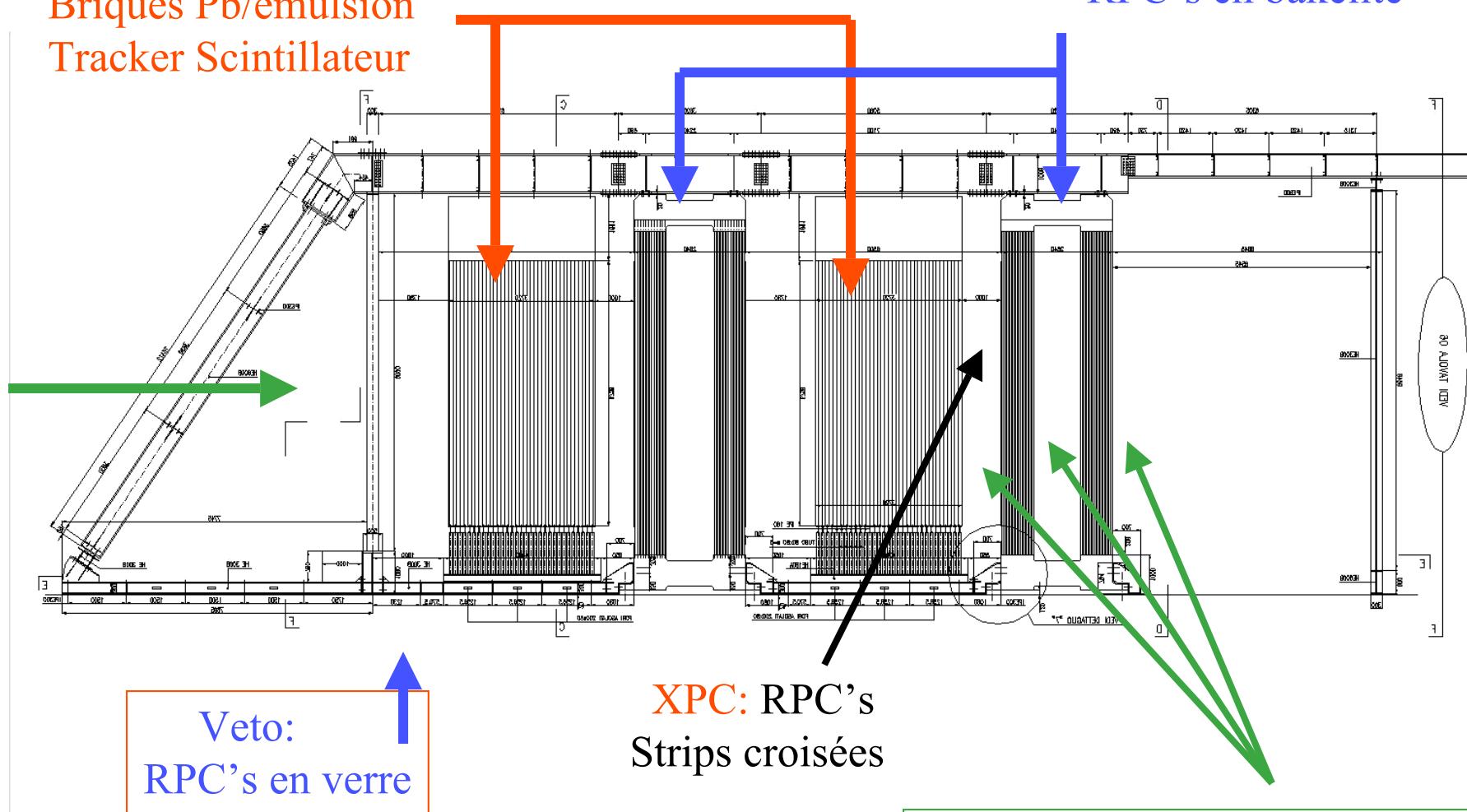
31 plans dans chaque supermodule:

Un plan:

Briques Pb/émulsion

Tracker Scintillateur

Aimant
+ RPC's en bakélite



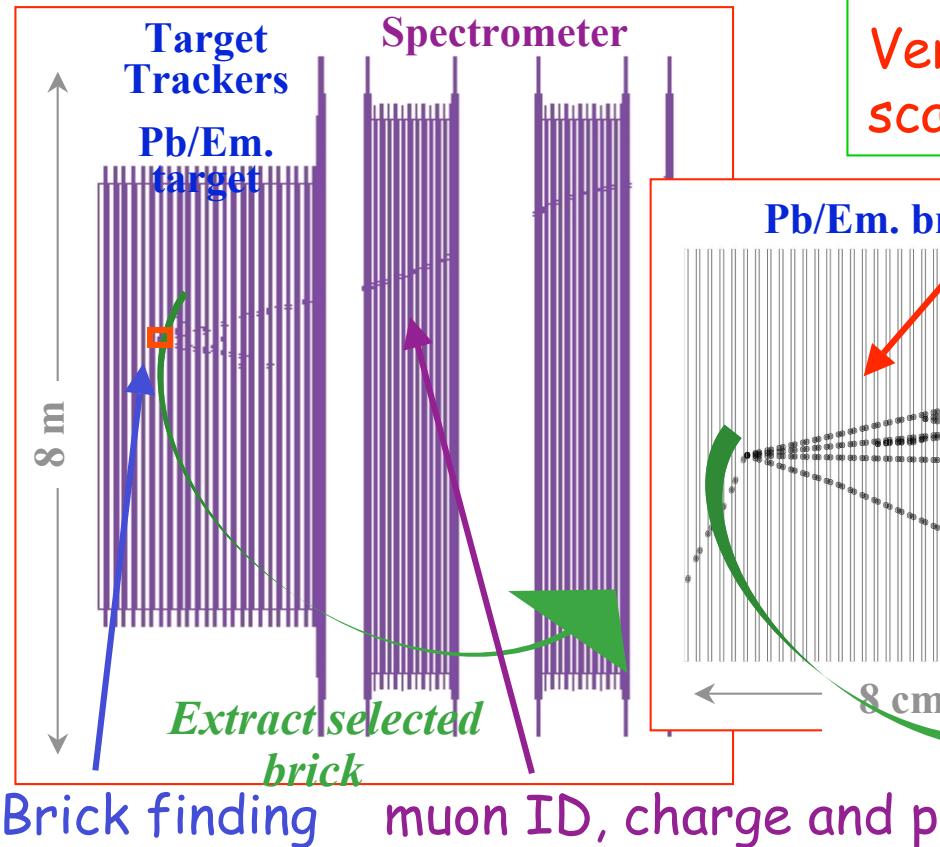
Veto:
RPC's en verre

XPC: RPC's
Strips croisées

HPT: Tracker de Haute Précision
Tubes à dérive

OPERA

Electronic detectors:

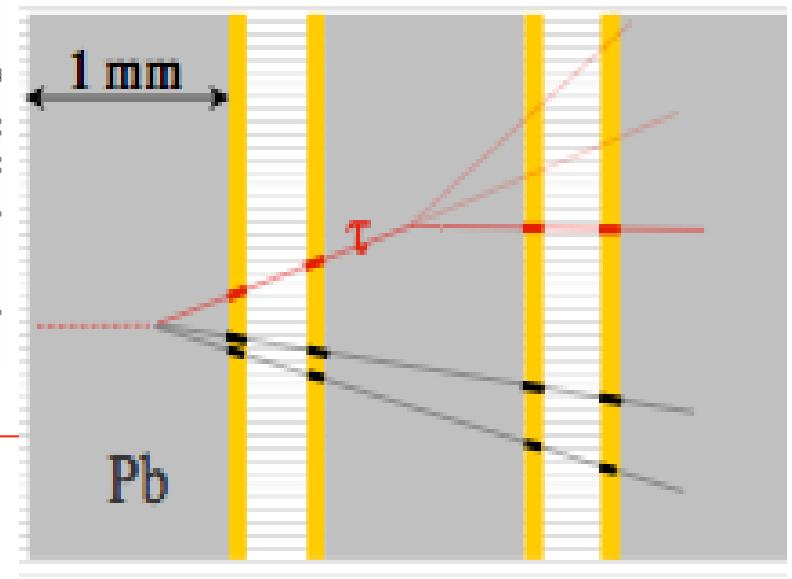


Emulsion analysis:

Vertex, decay kink e/γ ID, multiple scattering, kinematics

Pb/Em. brick

**Link to mu ID,
Candidate event**



Using the scintillator planes, reconstruct the event vertex

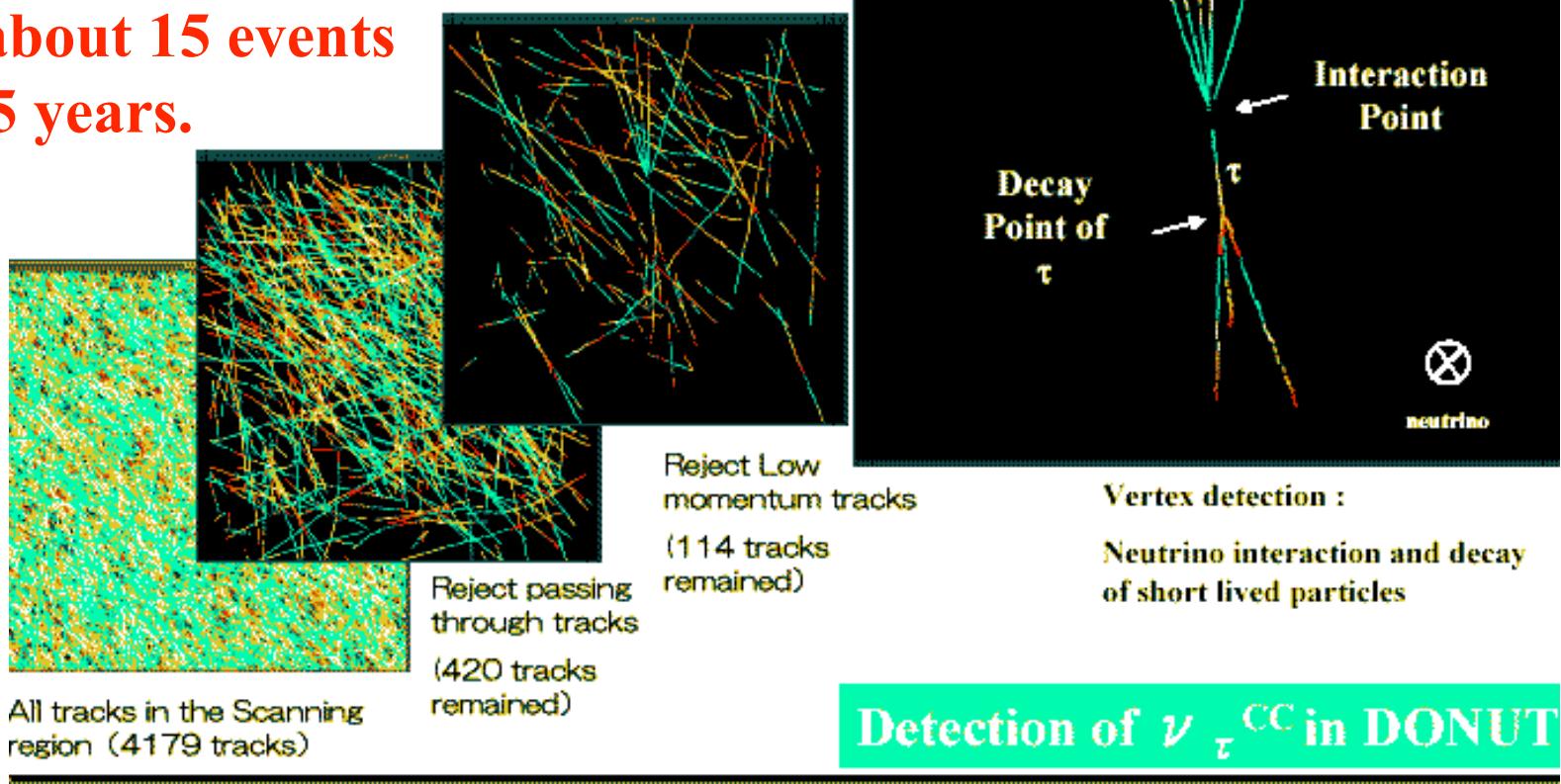
---> determine the interaction brick. Extract it. ~ 30 bricks / day

Expose the brick to cosmic rays
to have tracks going through all sheets
For relative alignment
Develop the emulsion sheets

OPERA

Event Reconstruction

Expect about 15 events
in 5 years.



Absolute neutrino masses

- What are the absolute neutrino masses?

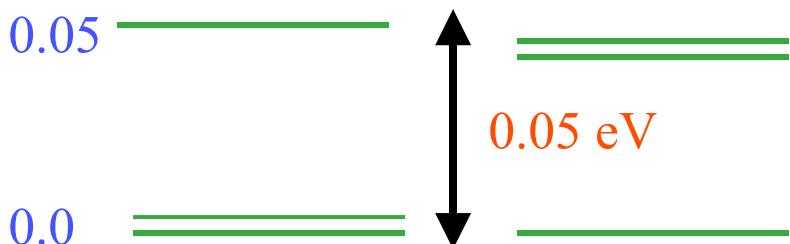
At least one neutrino

Must have a mass

$$>(2.4 \times 10^{-3})^{1/2} > 0.05 \text{ eV}$$

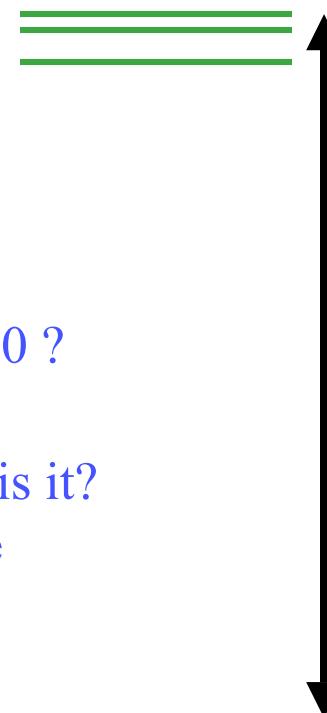
But is the lowest mass

ZERO?



Or is the
lowest mass $\neq 0$?

And if so What is it?
Degenerate case



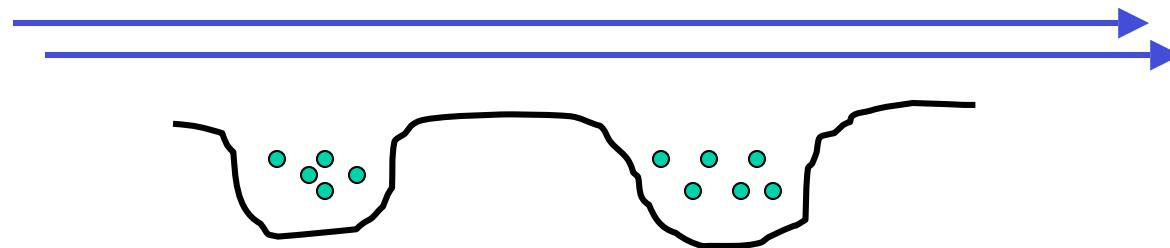
Absolute neutrino masses

Three ways to determine them:

- Cosmology
- β -decay: Tritium end point
- Double- β decay

Cosmology

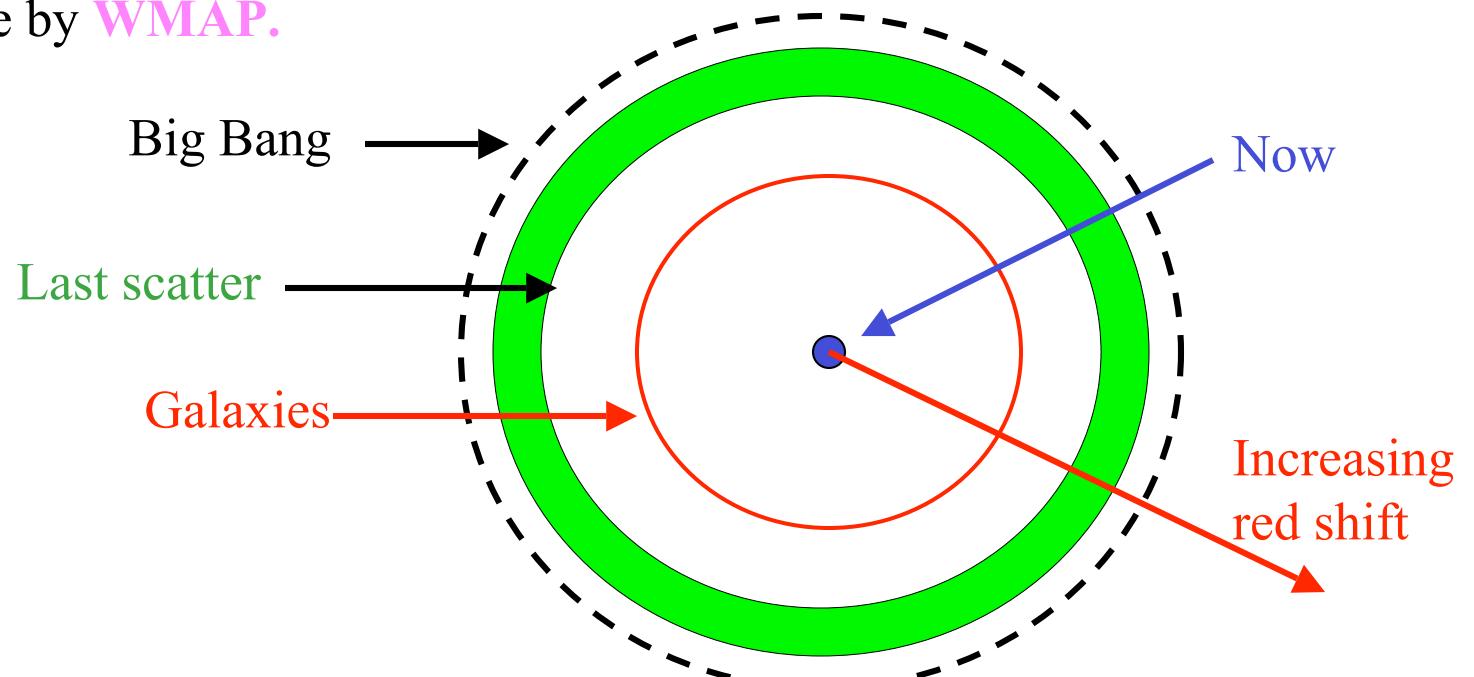
- Structure formation evolves with time since the big bang: they get **bigger** with time.
- If relativistic, neutrinos will be free-streaming. They will not be trapped in a gravitational well.



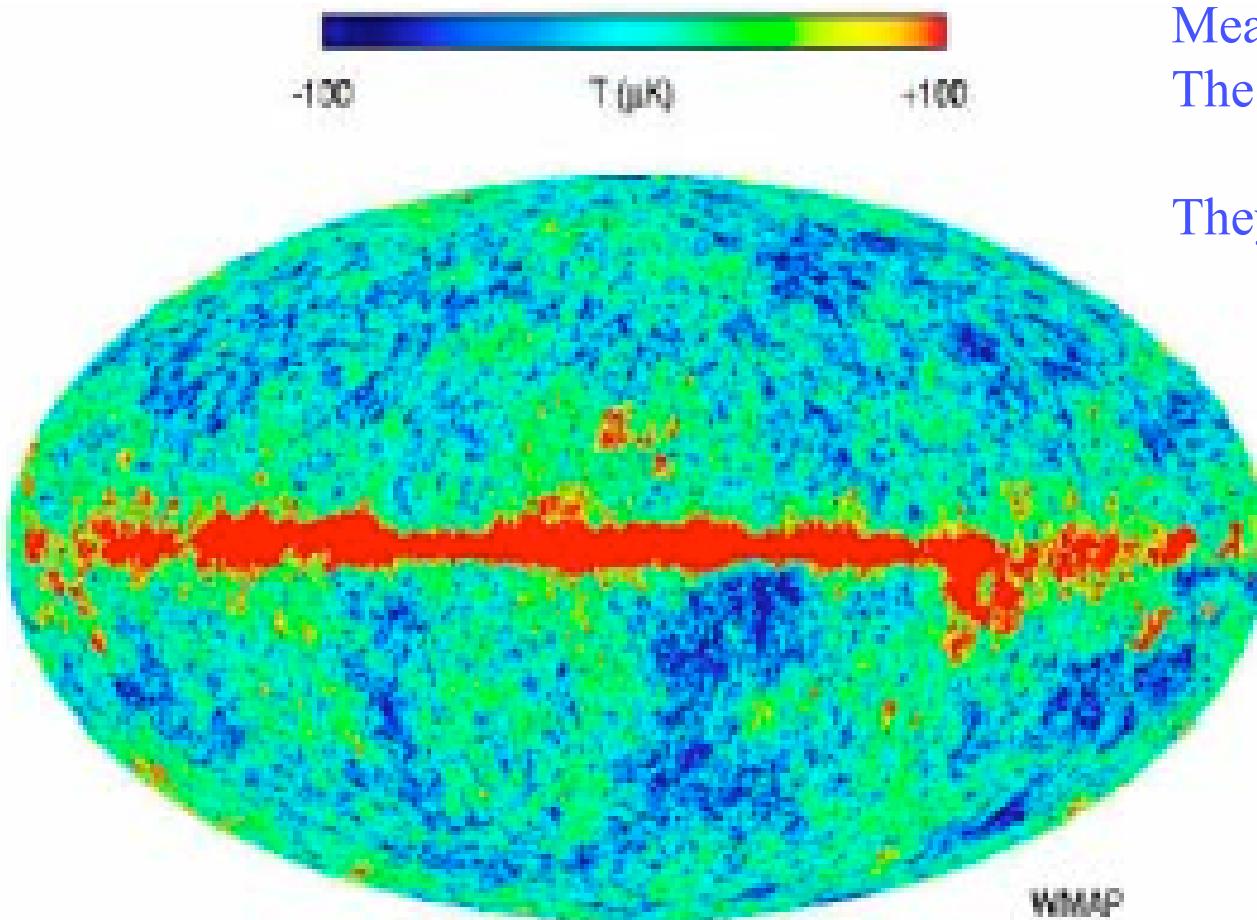
- This means that they will not contribute their mass to the gravitational attraction forming clusters.
- They will start to do so only as they become non-relativistic.
- The **larger** their mass, the **earlier** they will become non-relativistic as the universe cools.
- The **smaller** the clusters they will affect.
- **So massive neutrinos can affect cluster formation at small scales.**

How do we measure cluster sizes?

- At very large scales, measure the distribution of galaxies:
Sloan Digital Sky Survey.
- At smaller scales study the distribution and temperature of Cosmic Microwave Background Radiation (CMBR) .
This gives the location of the “last scatter”.
- Also CMBR photons scattering on electrons become polarized.
- Amount of polarization gives the density of electrons at the “last scatter”.
- This was done by **WMAP**.



WMAP: Temperature fluctuations in CMBR



Measure them by recording
The black-body spectrum.

They vary by $\sim 10^{-5}$!

Map of CMBR temperature Fluctuations

$$\Delta(\theta, \varphi) = \frac{T(\theta, \varphi) - \langle T \rangle}{\langle T \rangle}$$

Multipole Expansion

$$\Delta(\theta, \varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta, \varphi)$$

Temperature --> cluster size?

- Denser matter causes **more** heating raising temperature of photons.
- Competing effect:
 - the photon traverses a region of matter.
 - It falls in its gravitational potential.
 - By the time it comes out of the region, the region has acquired more mass.
 - The gravitational potential the photon has to climb out of is deeper than the one it fell in: it loses energy: it is red-shifted. It is **cooler**.
- Net effect: **cooler temperatures mean denser matter.**

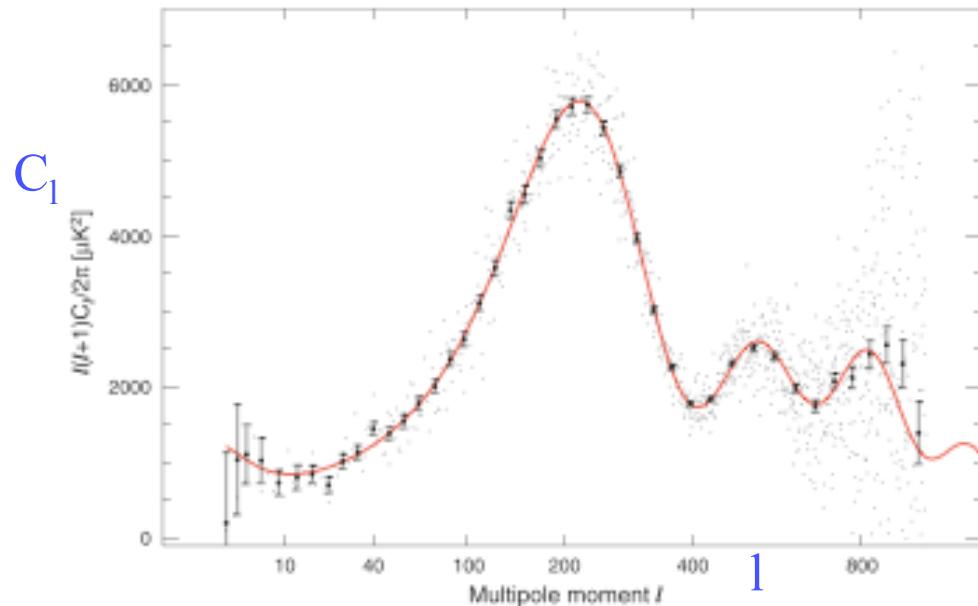
How to observe matter fluctuations

- WMAP has an angular resolution of $10'$.
- Measure temperature distribution over the whole sky.
- Measure the deviation from the average temperature for each point: $\Delta T/T$.
- Collect the temperature for all pairs of direction \mathbf{n}, \mathbf{m} separated by angle θ .
 $(\mathbf{n} \cdot \mathbf{m} = \cos \theta)$.
- Measure the correlation between these two points by forming the average

- $C(\theta) = \langle (\Delta T(\mathbf{n})/T)(\Delta T(\mathbf{m})/T) \rangle$

- If there is no correlation $C(\theta)$ will be zero. **Not so otherwise.**
- Repeat for all angles θ .
- Expand as a series of Legendre polynomials $P_l(\cos \theta)$
- $C(\theta) = (1/4\pi) \sum (2l+1) C_l P_l(\cos \theta)$. Summed from 1 to l_{\max} .
- C_l describe the density fluctuations.
- The sum falls off to zero at $\sim 200^\circ/l_{\max}$.
- The relevant scale for primordial fluctuations is $\sim 1^\circ$, so $l > 100$ is the interesting region.

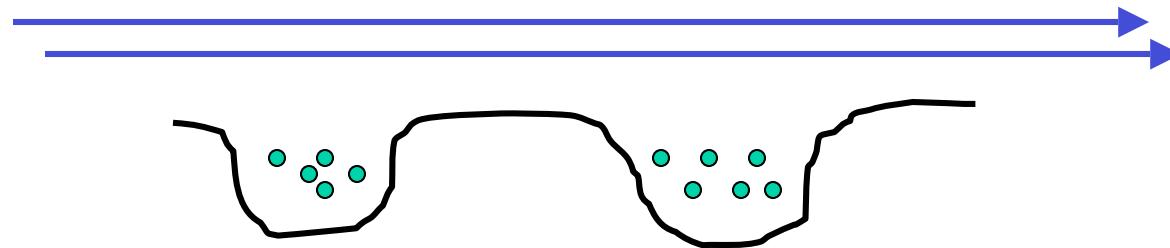
Limits



Smaller scales ---->

- Plot Power $\sim C_l$ vs l . Observe peaks.
- Assume there has been an initial primordial perturbation in the density.
- Can be decomposed into a superposition of different wave lengths λ .
- The first peak will correspond to a wave that has had time to oscillate just once.
- A “recent wave” corresponding therefore to a time when structures were large.
- The second more than once. “Older wave”. etc... **larger l ---> smaller structures.**

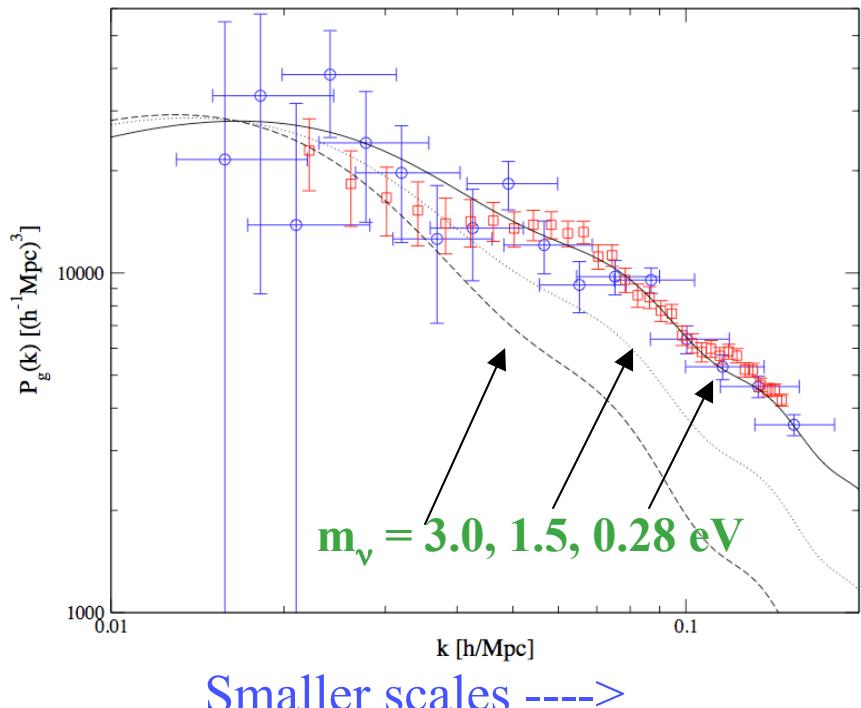
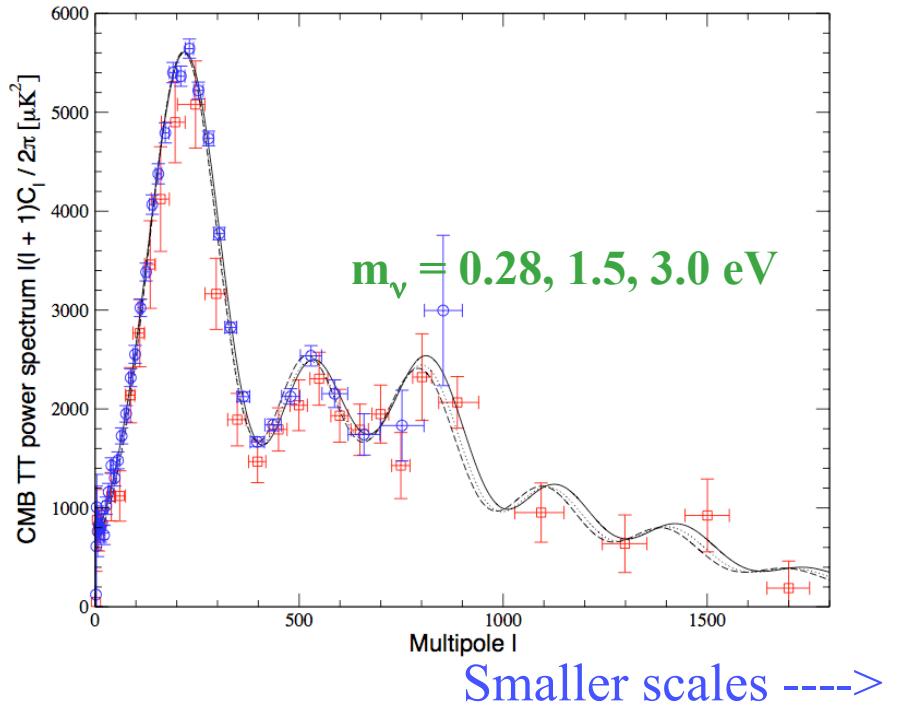
Limits



- If relativistic, neutrinos will be free-streaming. They will not be trapped in a gravitational well.
- This means that they will not contribute their mass to the gravitational attraction forming clusters.
- They will start to do so only as they become non-relativistic.
- The **larger** their mass, the **earlier** they will become non-relativistic as the universe cools.
- The **smaller** the clusters they will affect.

- **So massive neutrinos can affect cluster formation at small scales.**

Limits



Can do the same with galaxy clusters and super clusters:

Look at fluctuations in the number of galaxies in volumes of λ^3 Mpc in sky. Vary λ .

Limit on absolute neutrino mass

$$\Sigma m_1 + m_2 + m_3 < 1.3 \text{ eV}$$

From cosmology (WMAP alone)

Remember: we also have a lower limit : $> 0.05 \text{ eV}$

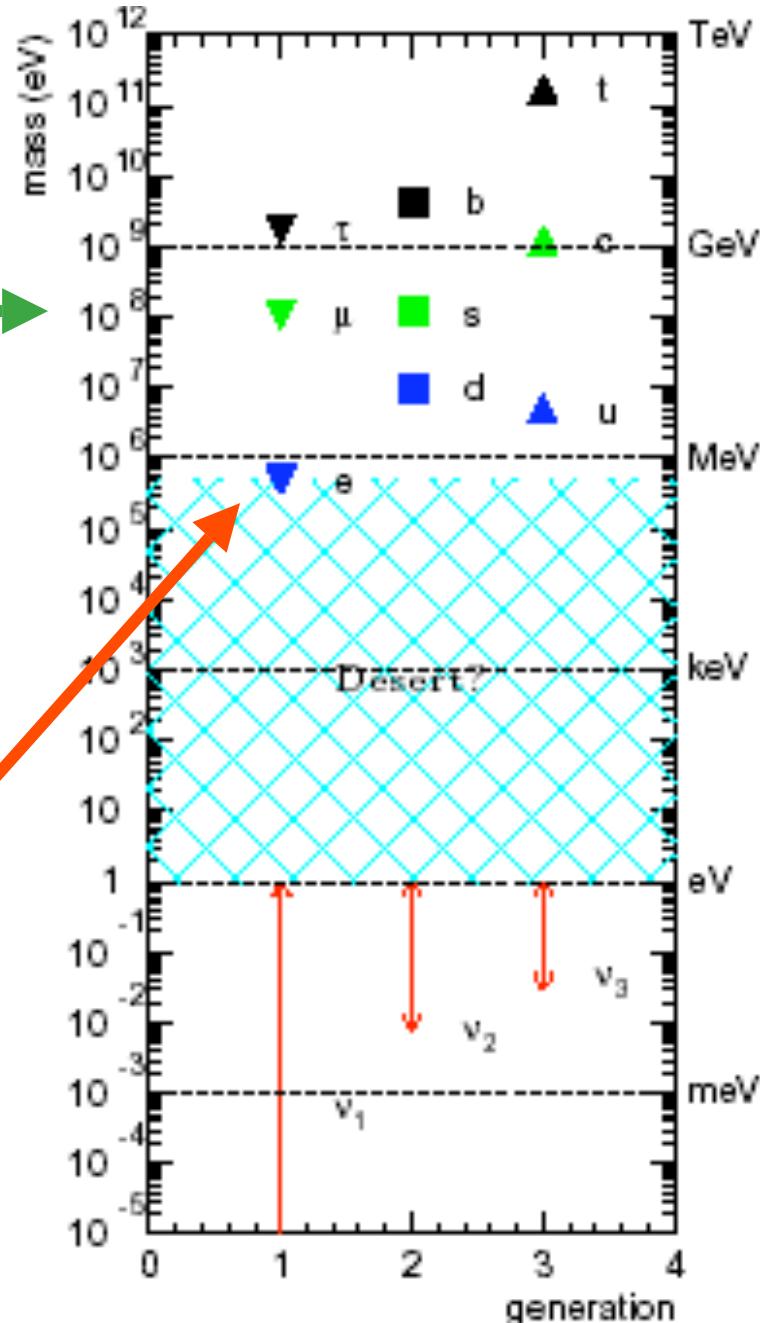
on at least one neutrino mass state

Other particles

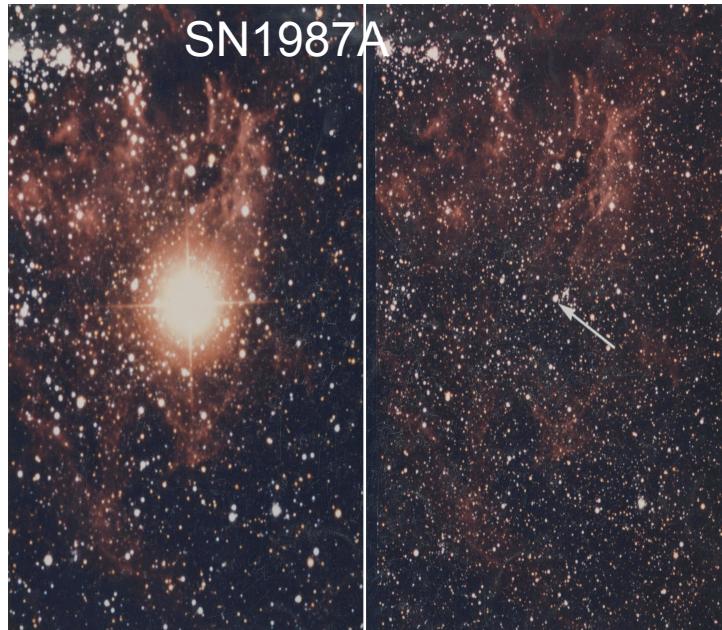
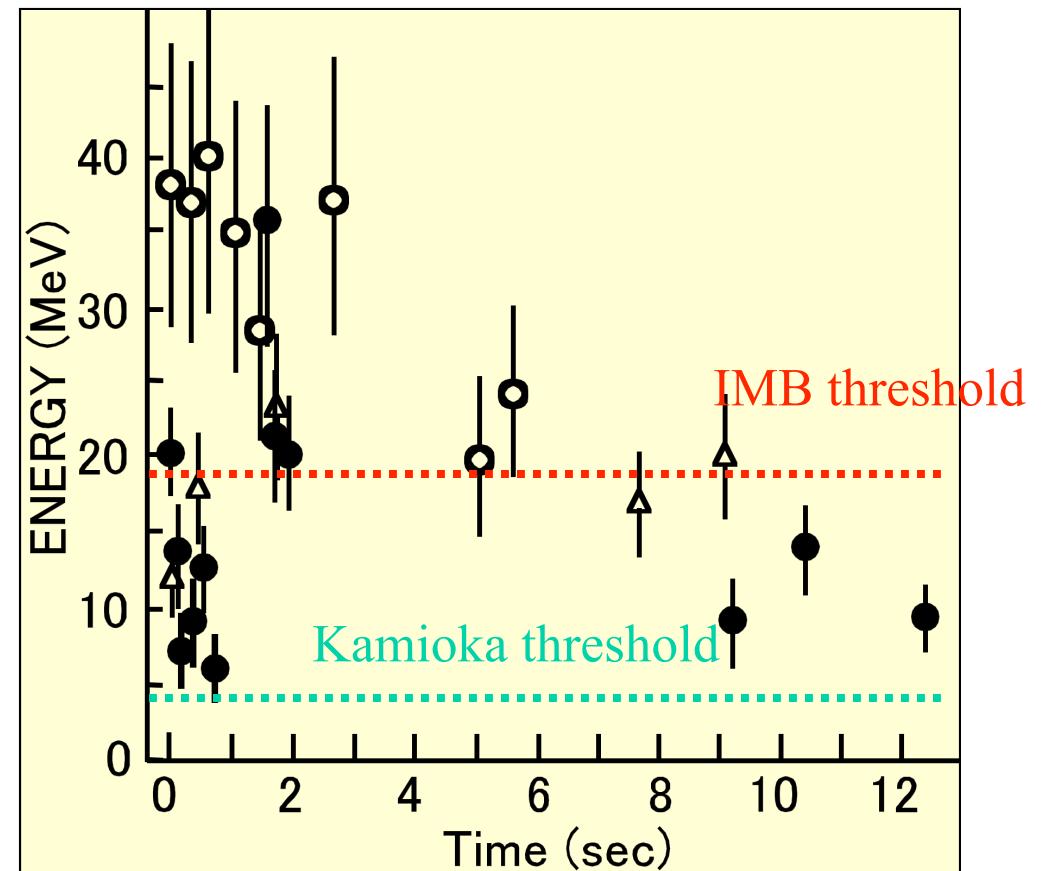
Why are neutrino
masses so low????

6 orders of
magnitude smaller
than the next heaviest
particle: the electron

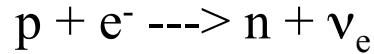
Fascinating to me !!!!!!



Neutrinos from Super Novae



A large burst of neutrinos is associated with a SN
Collapse of the iron core ($R = 8000$ km) of a star due to gravitational pressure:



Turns into a neutron star ($R = 50$ km) with density of nuclear matter $10^{14-15} \text{ gm.cm}^{-3}$
About **20 neutrino interactions** seen mostly in Kamiokande, also IMB.

Absolute Neutrino Mass from Super Novae

Time of arrival distribution ---> limit on ν mass.

Time difference between a $c=1$ neutrino and a massive neutrino:

$$\Delta t = D/\gamma c - D/c = (1/\gamma - 1)(D/c) = (E/p - 1)(D/c) = m^2 D/(2E^2)$$

$$= 2.57 \text{ (sec)} (D/50\text{kparsec}) (10\text{MeV}/E)^2 (m_\nu/10\text{eV})^2 \text{ (In REAL units)}$$

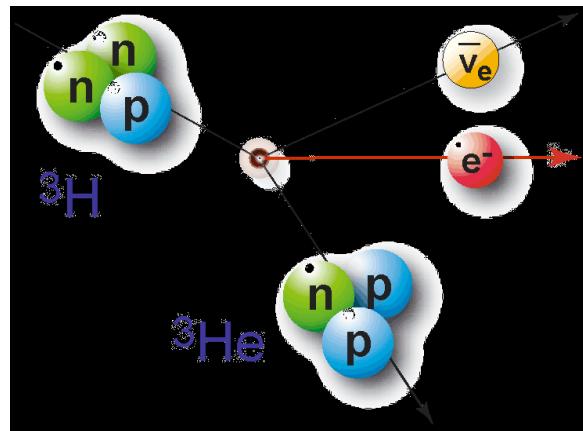
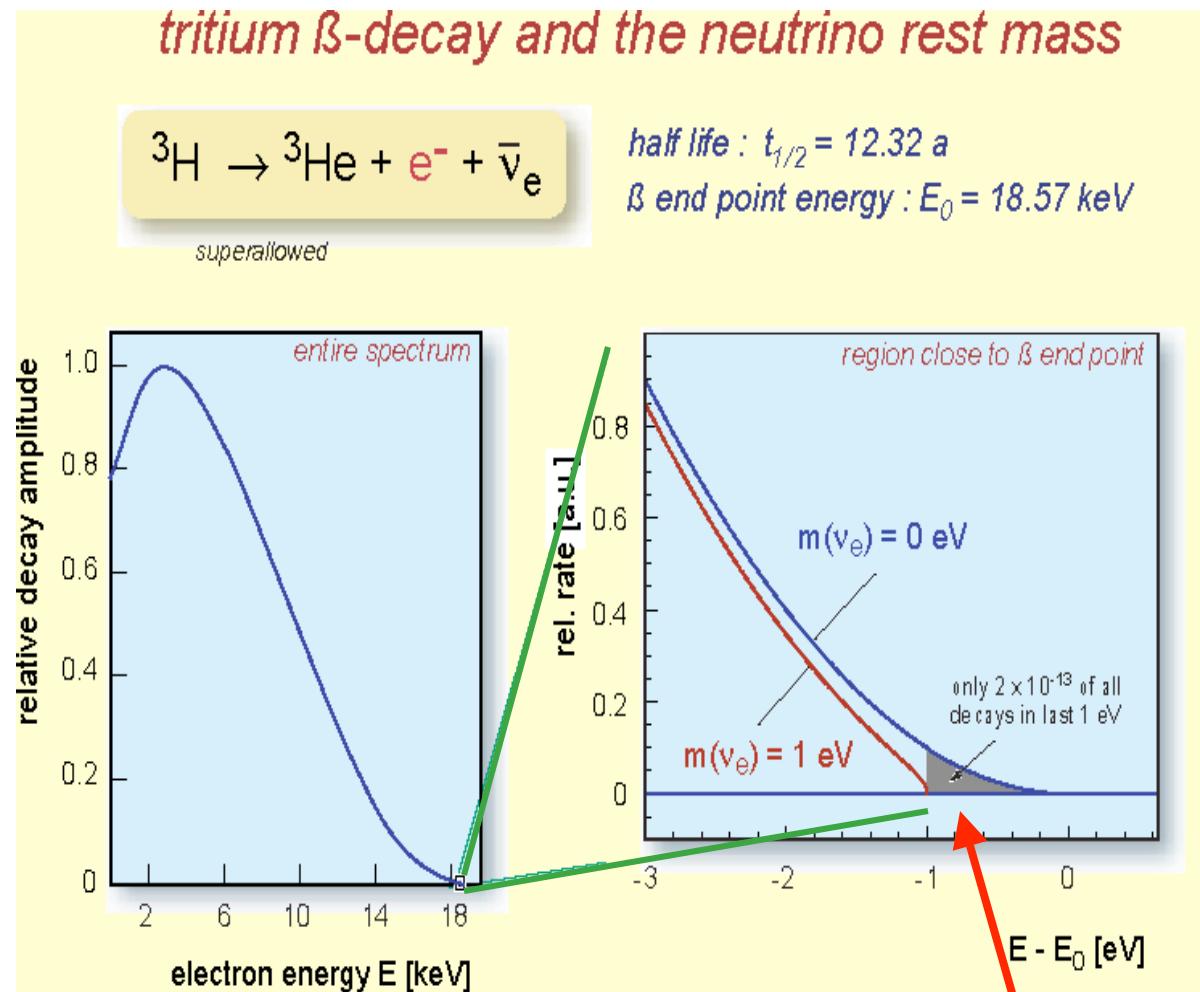
$$m_\nu < 20 \text{ eV}$$

This could be used in the future, now that we have better detectors
IF another SN occurs, SuperKamiokande could see **5500** events.

Problem: Uncertainty in emission time distribution.

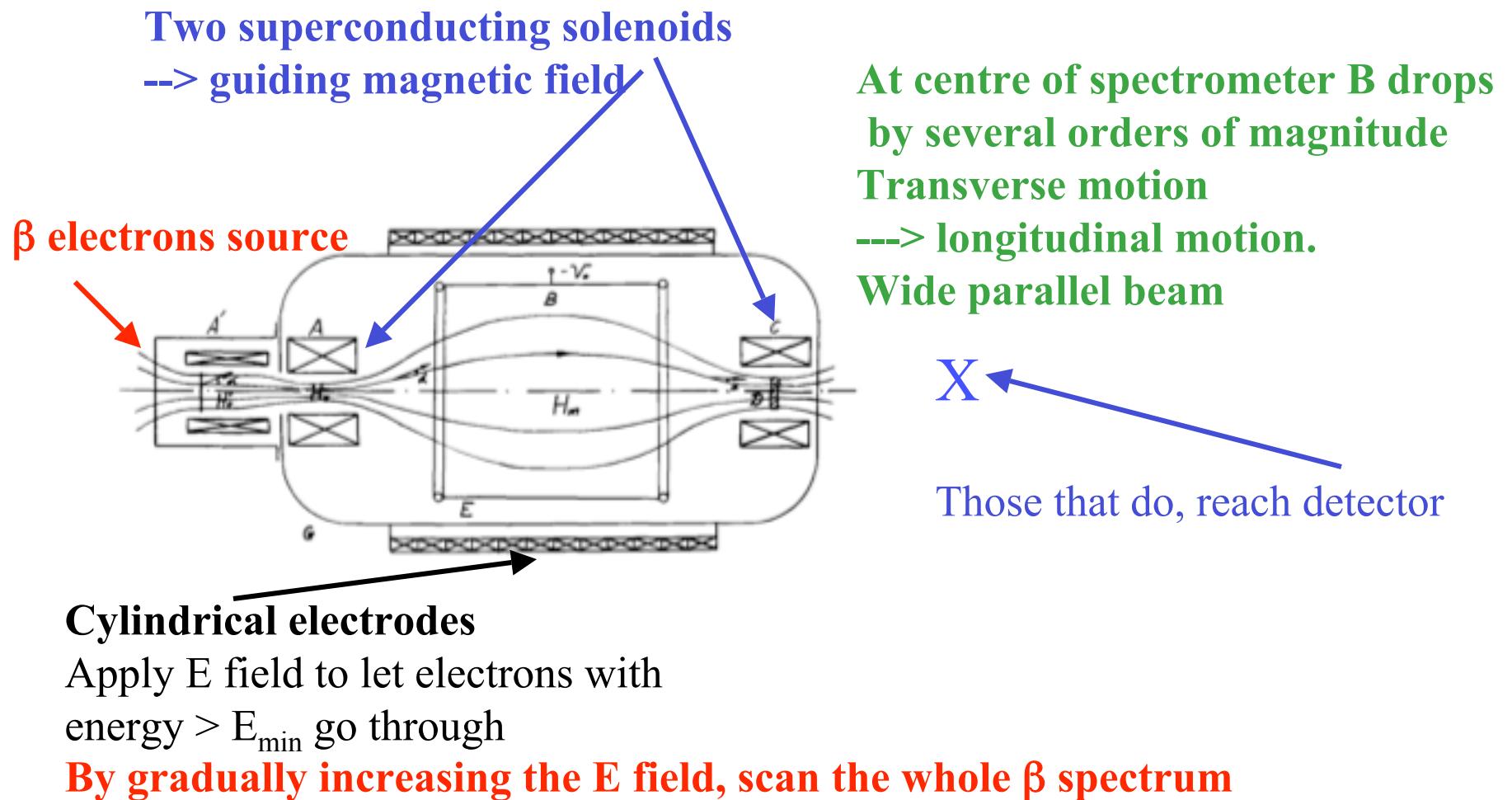
The direct measurements: ν_e

Look at the end point energy in a β decay spectrum: Tritium



If $m_\nu \neq 0$ the maximum possible energy carried by the electron will be **reduced**

Magnetic Adiabatic Collimation Electrostatic Filter (MAC-E)



New technique: cryogenic bolometer

Cryogenic detector principle:

Make the absorber out of a dielectric and diamagnetic material

Particle deposits an amount of energy Q

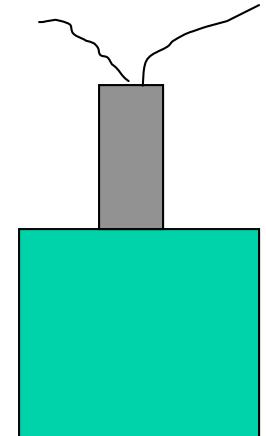
Heat capacity C_v is proportional to T^3 .

At very low temperature it will be small

So $\Delta T = Q/C_v$ will be measurable

Electrothermal thermometer

β emitter and absorber



^{187}Re has 7 times smaller end-point than Tritium: Good

Can use a cryogenic bolometer to measure total energy emitted.

Still working on energy resolution

Problem: measures ALL decays simultaneously.

Cannot select JUST events near end-point

So must collect 10^{10} more events than needed (but Deadtime $\sim 100\mu\text{s}$).

Many detectors needed.

The direct measurements

	ν_e	ν_μ	ν_τ
Limit	2.3 eV/c^2	0.16 MeV/c^2	18.2 MeV/c^2
Confidence Level	95%	90%	95%
Method	Tritium End point	p_μ in $\pi \rightarrow \mu \nu_\mu$	5 pion inv. mass in decay $\tau \rightarrow 5\pi \nu_\tau$

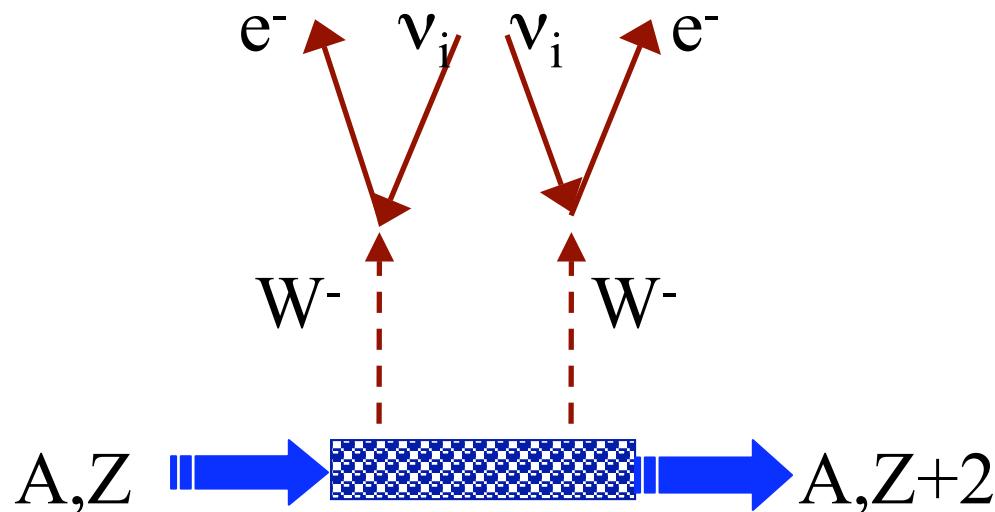
Double- β decay

Standard 2-neutrino **double β decay**: emits 2 electrons.

Two separate neutrons decaying in nucleus.

This happens when **single β decay** is energetically forbidden or inhibited by parity or angular momentum

Typical half-lives: **$10^{19} - 10^{21}$ years**



Neutrinoless Double- β decay

➤ Since neutrinos have non-zero mass.

Neutrinoless double β decay

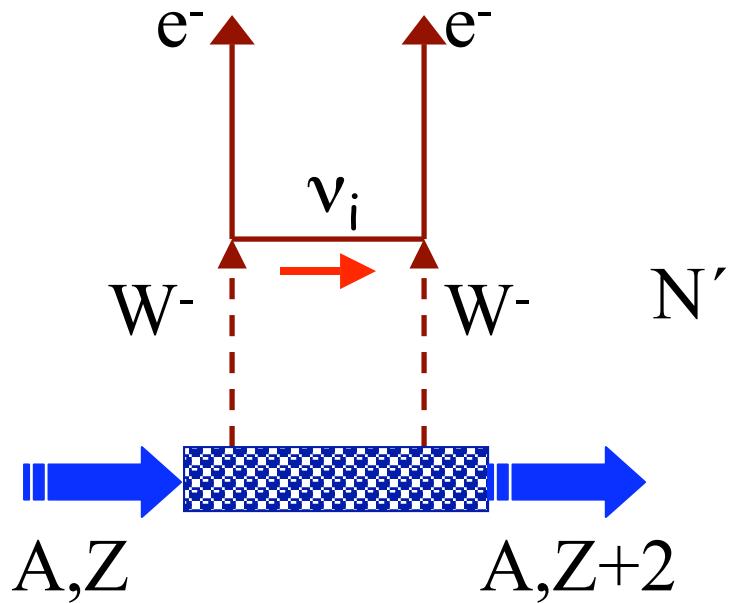
➤ They therefore can develop a
right-handed helicity component
 $\sim m_\nu/E_\nu$.

➤ IF the neutrino is its own antiparticle
Neutrino is **IDENTICAL** to antineutrino

Then the right handed component of the ν
emitted in the first neutron decay IS
an **antineutrino**

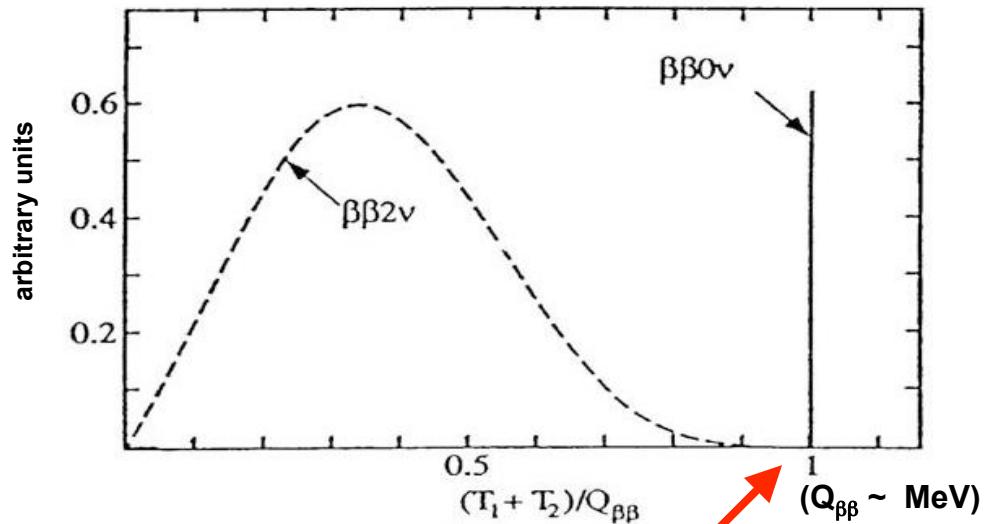
Exactly what could be reabsorbed by the
 W^- of the second decay

➤ Helicity must flip
→ **Probability increases with m_ν**



If the neutrino is its own
Antiparticle: Majorana neutrino.

Detection



Look for a peak at the end point of the 2-neutrino β spectrum

New experiments will use: ^{130}Te , ^{132}Xe , ^{76}Ge , ^{100}Mo

Will observe the 2 electrons through bolometric, calorimetric or tracking techniques

Sensitivity down to 100-300 meV. Note: "m" stands for milli

Only **2 electrons** are emitted:
The sum of their energy is **monochromatic**:
Difference of the $(A,Z) - (A,Z+2)$ masses
Equal to the end-point of the 2-neutrino beta-decay.

Detection Technique I

Source \neq detector

Source is a sheet of Double- β decay material.

Sheet must be thin to minimize energy loss of 2 electrons: affects energy resolution.

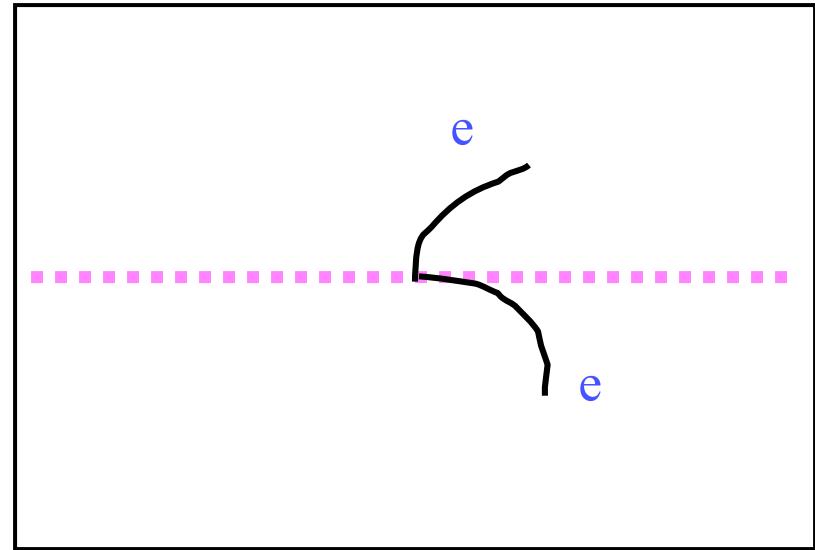
Placed inside a tracking device.

Observe the two electrons

Measure their energy (and direction).

Good for background rejection:

2 electrons must originate from same spot.



Detection Technique II

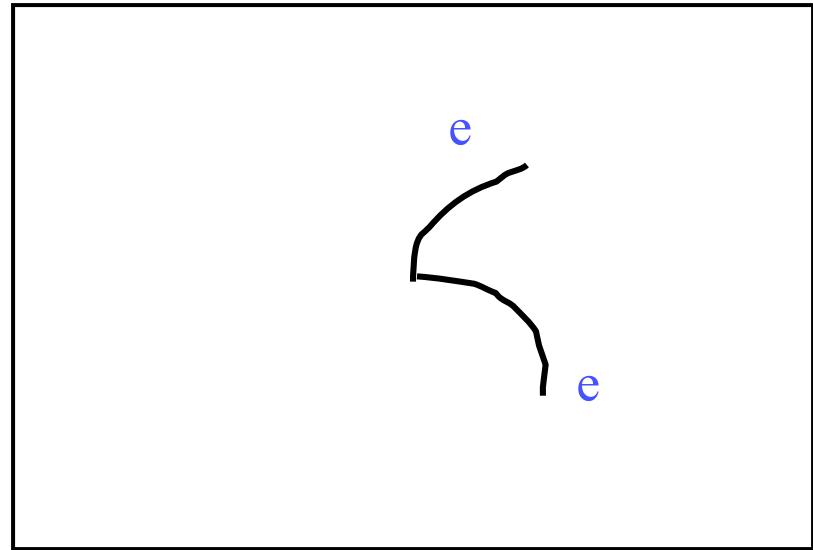
Source = detector

Material is part of a calorimeter.

It measures the whole energy of the two electrons: no problem of energy loss.

Cryogenic detector

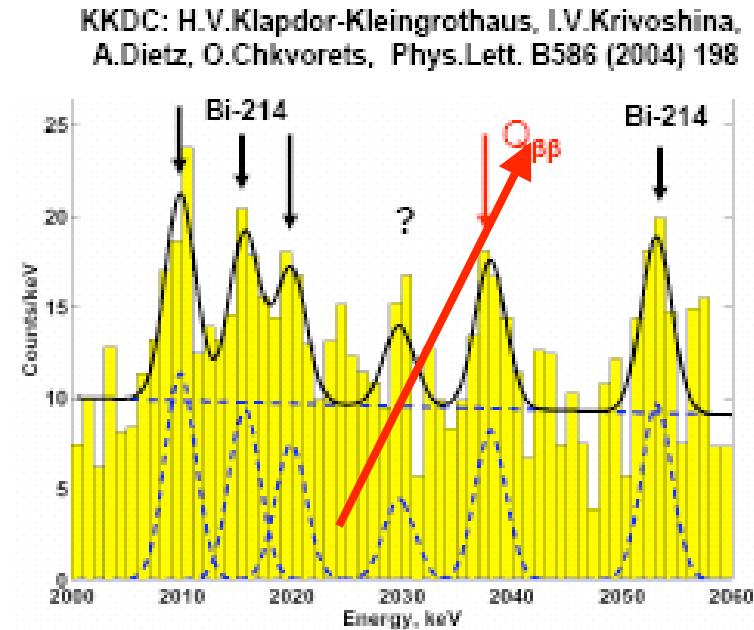
Dielectric material for which heat capacity is proportional to T^3
At very low temperature, a small energy deposit can result in a large temperature increase.



Limits and one possible claim

Present limits on neutrinoless double beta decay: $10^{21} - 10^{25}$ years

Except for one claim using 11 kg of enriched ^{76}Ge :



Half life $T^{0\nu} \frac{1}{2}$: $1.19^{+2.99}_{-0.50}$ years

- Many other peaks, maybe explained
- Where should the flat background line be drawn?

Needs checking

Limits

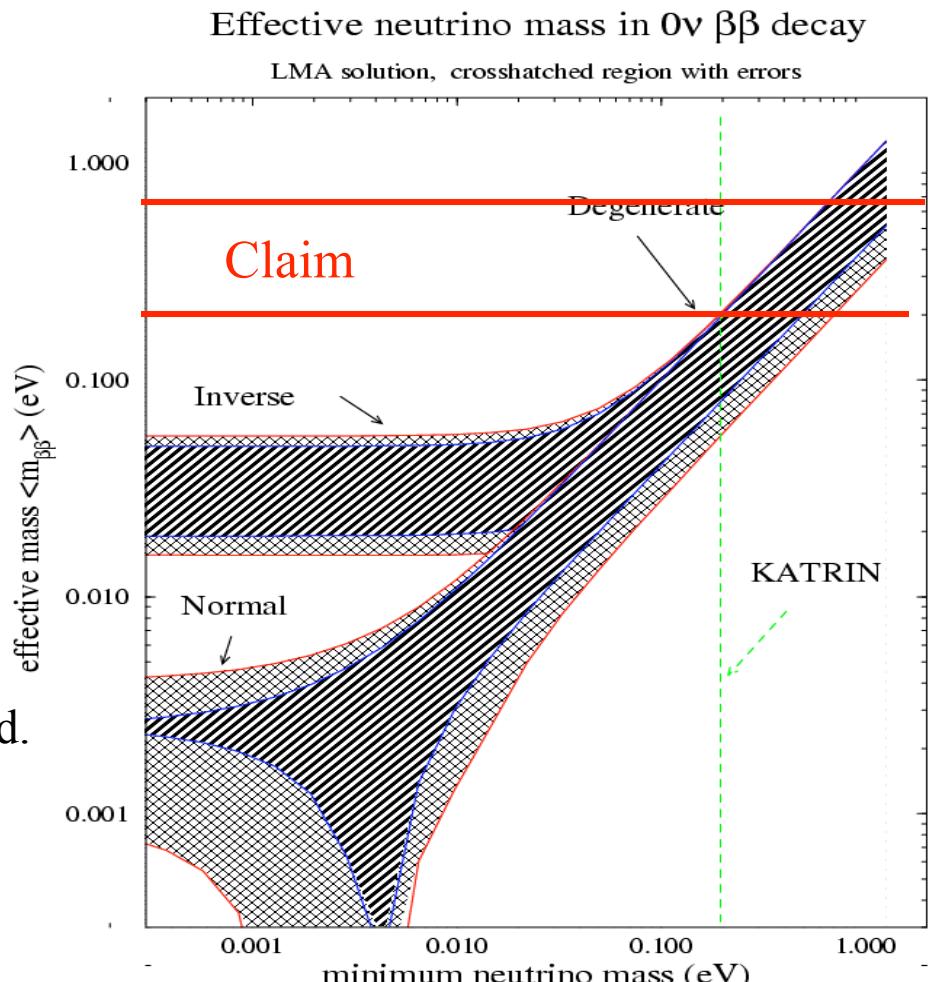
$$\text{Rate} = (T_{0\nu}^{\beta\beta})^{-1} = (\text{Phase space factor}) \times (\text{Matrix element})^2 \times \langle m_{ee} \rangle^2$$

$$\langle m_{ee} \rangle = |U_{e1}^2 m_1 + U_{e2}^2 m_2 + U_{e3}^2 m_3|$$

➤ **Normal hierarchy**: $m_3 > m_{1,2}$
 But U_{e3} is small so large m multiplied
 by small $U \rightarrow$ **small m_{ee}** .

➤ **Inverted hierarchy**: $m_{1,2} > m_3$
 So larger U_{ei} multiplied by large $m_{1,2}$
 \rightarrow **large m_{ee}**

➤ **Degenerate**: all 3 masses \sim same
No difference between normal and inverted.



Present limits

$$\text{Rate} = (T^{\text{ov}}_{1/2})^{-1} = (\text{Phase space factor}) \times (\text{Matrix element})^2 \times \langle m_{ee} \rangle^2$$

Nuclear matrix elements are still uncertain. Affect Lifetime limits.

Best limits from ${}^{76}\text{Ge} > 1.9 \times 10^{25} \text{ years}$

$$0.30 < m_{ee} < 1.04 \text{ eV}$$

New experiments will go down
100-300 milli eV

Reminder: **If Neutrinoless $\beta\beta$ decay is found,
the Majorana nature of neutrinos will have been established.**

The NEAR Future

Correlations in Oscillation Probability

From M. Lindner:

- $\Delta = \Delta m_{31}^2 L / 4E$
- qualitative understanding \Rightarrow expand in $\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$ and $\sin^2 2\theta_{13}$
- matter effects $\hat{A} = A / \Delta m_{21}^2 = 2VE / \Delta m_{21}^2$; $V = \sqrt{2}G_F n_e$

$$\begin{aligned}
 P(\nu_e \rightarrow \nu_\mu) \approx & \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2} \\
 & \pm \sin \delta_{\text{CP}} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\
 & + \cos \delta_{\text{CP}} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\
 & + \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}
 \end{aligned}$$

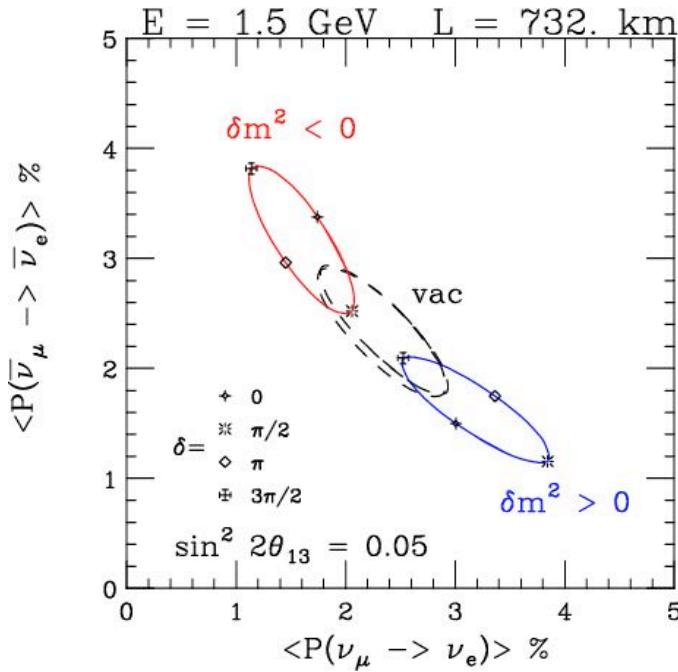
Measuring $P(\nu_\mu \sim \nu_e)$ does NOT yield a UNIQUE value of θ_{13} .
 Because of correlations between θ_{13} , δ_{CP} and the mass hierarchy (sign of Δm_{31}^2)

CP violation: Difference between Neutrino and Antineutrino Oscillations

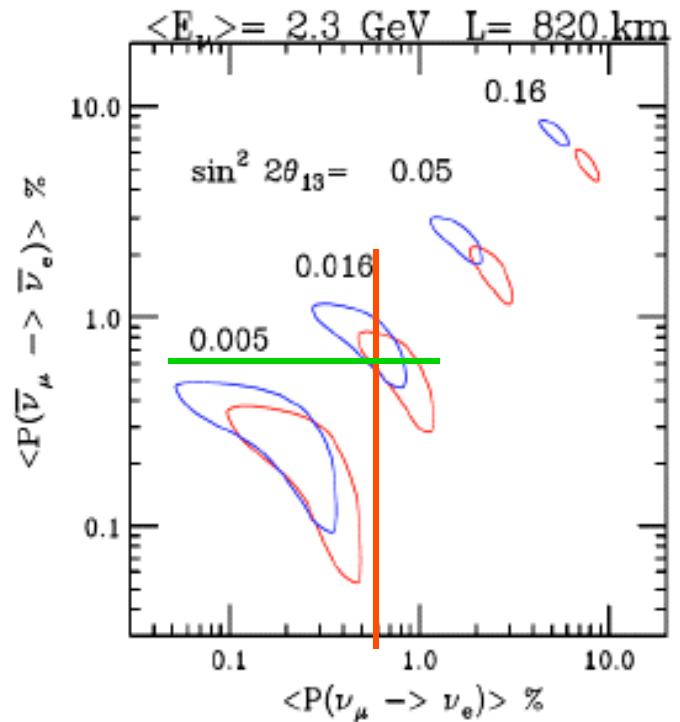
Mass hierarchy accessible through Matter effects :
 $1 - A$ depends on sign of Δm_{31}^2

8-fold degeneracies

- θ_{13} - δ ambiguity.
- Mass hierarchy two-fold degeneracy



A measure of $P_{\mu e}$ can yield a whole range of values of θ_{13}
 Measuring with $\bar{\nu}$'s as well reduces the correlations



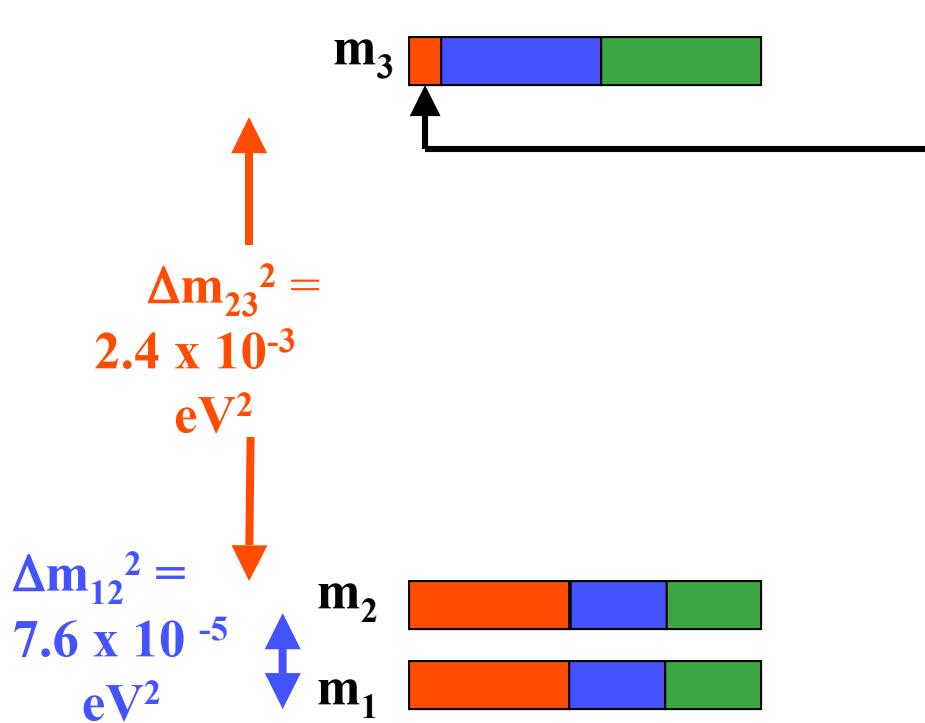
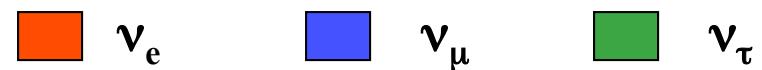
- θ_{23} degeneracy:

For a value of $\sin^2 2\theta_{23}$, say 0.92, $2\theta_{23}$ is 67° or 113° and θ_{23} is 33.5° or 56.5°

- In addition if we just have a lower limit on $\sin^2 2\theta_{23}$, then all the values between these two are possible.

How do we determine θ_{13} ?

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$



- m_3 has a small piece of ν_e
- Amount: $|U_{e3}|^2 = \sin^2 \theta_{13}$
- m_3 is only connected to other mass states through the atmospheric $\Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2$
- Need an experiment with $L/E \sim 500 \text{ km/GeV or } m/\text{MeV}$
- Must involve ν_e (or $\bar{\nu}_e$).

θ_{13} with Reactors

- Because of the large mass of μ (105 MeV) and τ (1777 MeV), we cannot look for ν_μ or ν_τ appearance with 3-4 MeV reactor antineutrinos.
- Must look for the disappearance of **anti- ν_e 's.**
- At distances relevant to reactors (<100km), matter effects are negligible.
- $P(\nu_e \rightarrow \nu_x) = 1 - P(\nu_e \rightarrow \nu_\mu) - P(\nu_e \rightarrow \nu_\tau)$
With $\Delta_{ij} = \Delta m_{ij}^2 L / 4E = 1.27 \Delta m_{ij}^2 (eV^2) L(m) / E(MeV)$
- $P(\nu_e \rightarrow \nu_x) =$
 $1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21} - \sin^2 2\theta_{13} c_{12}^2 \sin^2 \Delta_{31} - \sin^2 2\theta_{13} s_{12}^2 \sin^2 \Delta_{32}$
If we set $\Delta_{31} = \Delta_{32}$
- $P(\nu_e \rightarrow \nu_x) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21} - \sin^2 2\theta_{13} (c_{12}^2 + s_{12}^2) \sin^2 \Delta_{32}$
- $P(\nu_e \rightarrow \nu_x) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{32}$
- If we chose E and L to be at maximum of atmospheric oscillation length
- **We can even neglect the first term**

θ_{13} with Reactors: How to reduce systematics

$$P_{ee} = 1 - \sin^2 2\theta_{13} \sin^2 [(\Delta m_{23}^2 L) / (4E_\nu)] \quad \text{near oscillation maximum}$$

Advantage: NO dependence on δ_{CP} or mass hierarchy: No ambiguities.

Disadvantage: Cannot determine them!

CHOOZ already tried. Limited by systematic uncertainties on reactor flux and cross sections.

How to reduce systematics ?

- **Solution:** Use **2** detectors
- Additional **NEAR** detector: measure flux and cross sections BEFORE oscillations.
- Even better: **interchange** NEAR and FAR detectors part of the time to reduce detector systematics

Technique

Measure through inverse β decay:

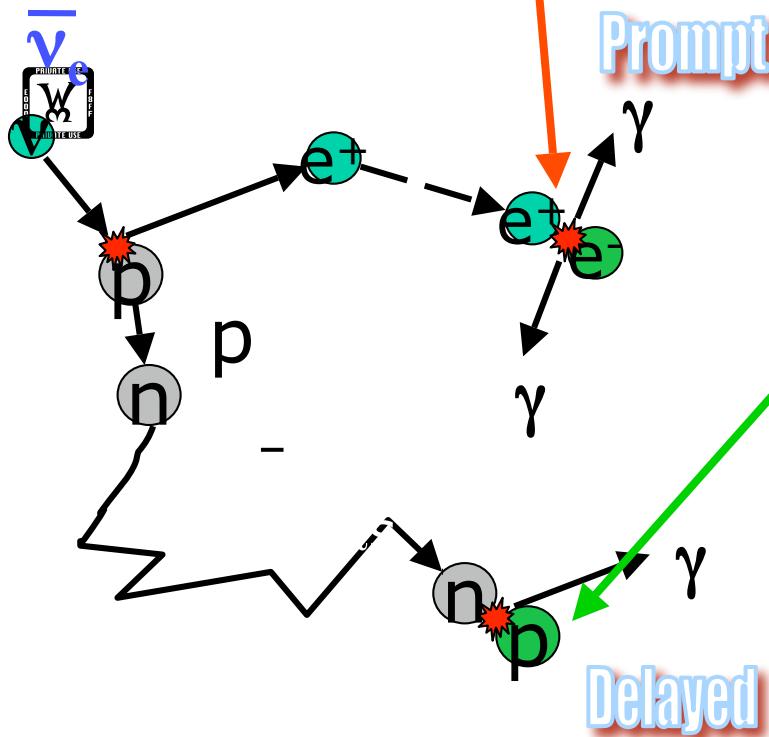
$$\bar{\nu}_e + p = e^+ + n$$

e^+ annihilates with e^-
of liquid: MeV \rightarrow 2 photons

- Detector :

Liquid scintillator loaded with **gadolinium**:

Large cross section for neutron capture \rightarrow photons

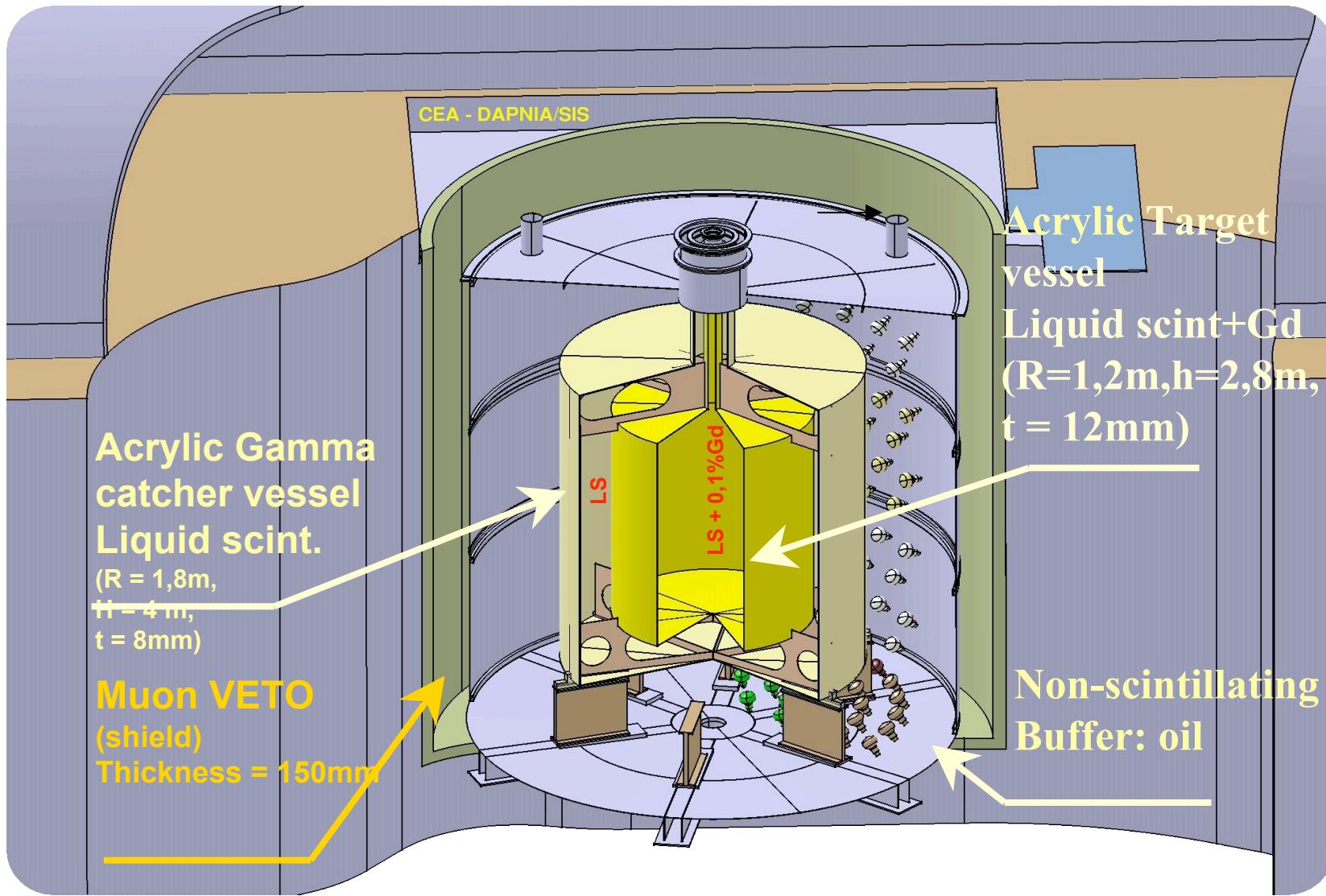


n captured by Gadolinium:
8 MeV of photons emitted
within 10's of μ sec.

Delayed Coincidence
of 2 signals
Reduces background

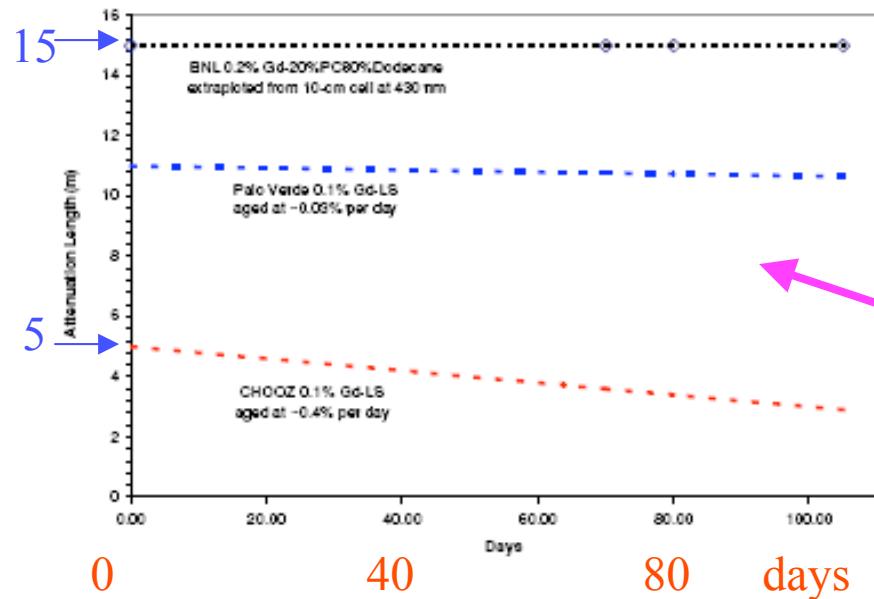
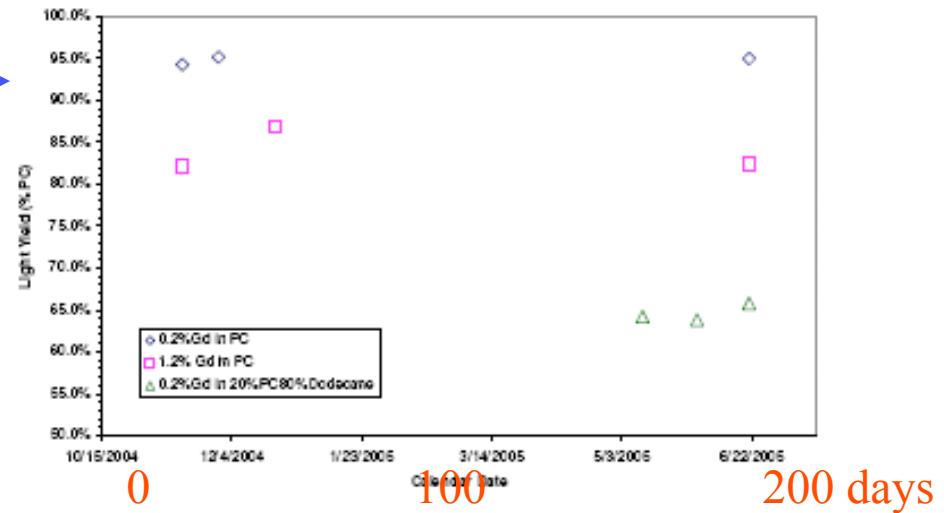
Double Chooz detector

Inner detector, gamma catcher, mineral oil buffer , inner μ , outer veto (scintillator strips)



Scintillator performance: Light yield and absorbance.

Light yield in % of pseudocumene
As measured in BNL samples: →
Stable over 220 days.



Comparison of degradation of
Attenuation length over 100 days
For CHOOZ, Palo Verde and BNL.

Must continue checks with final vessel

**But there does NOT seem to be
any cause for worry.**

Reduction of systematics

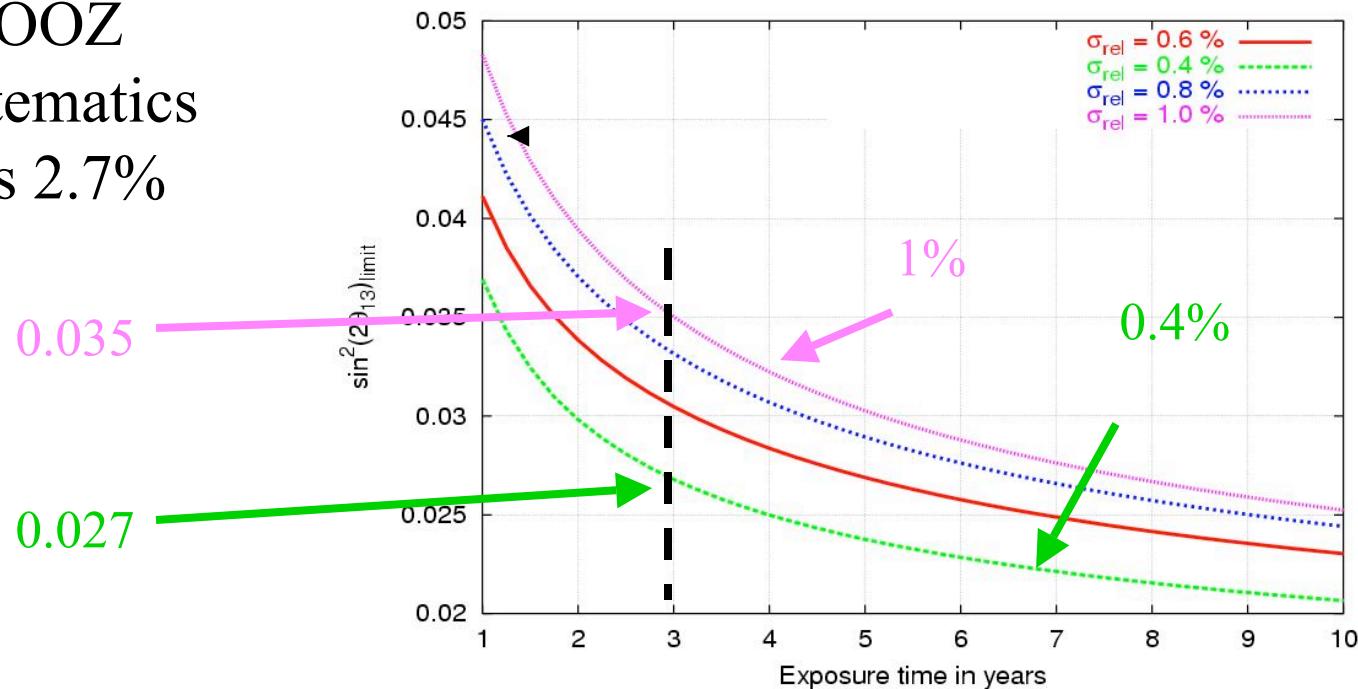
Variable	CHOOZ (%)	Double Chooz (%)
ν flux and σ	1.9	<0.1
Reactor power	0.7	<0.1
Energy per fission	0.6	<0.1
Total	2.7	<0.6

Importance of systematics

Importance of systematics

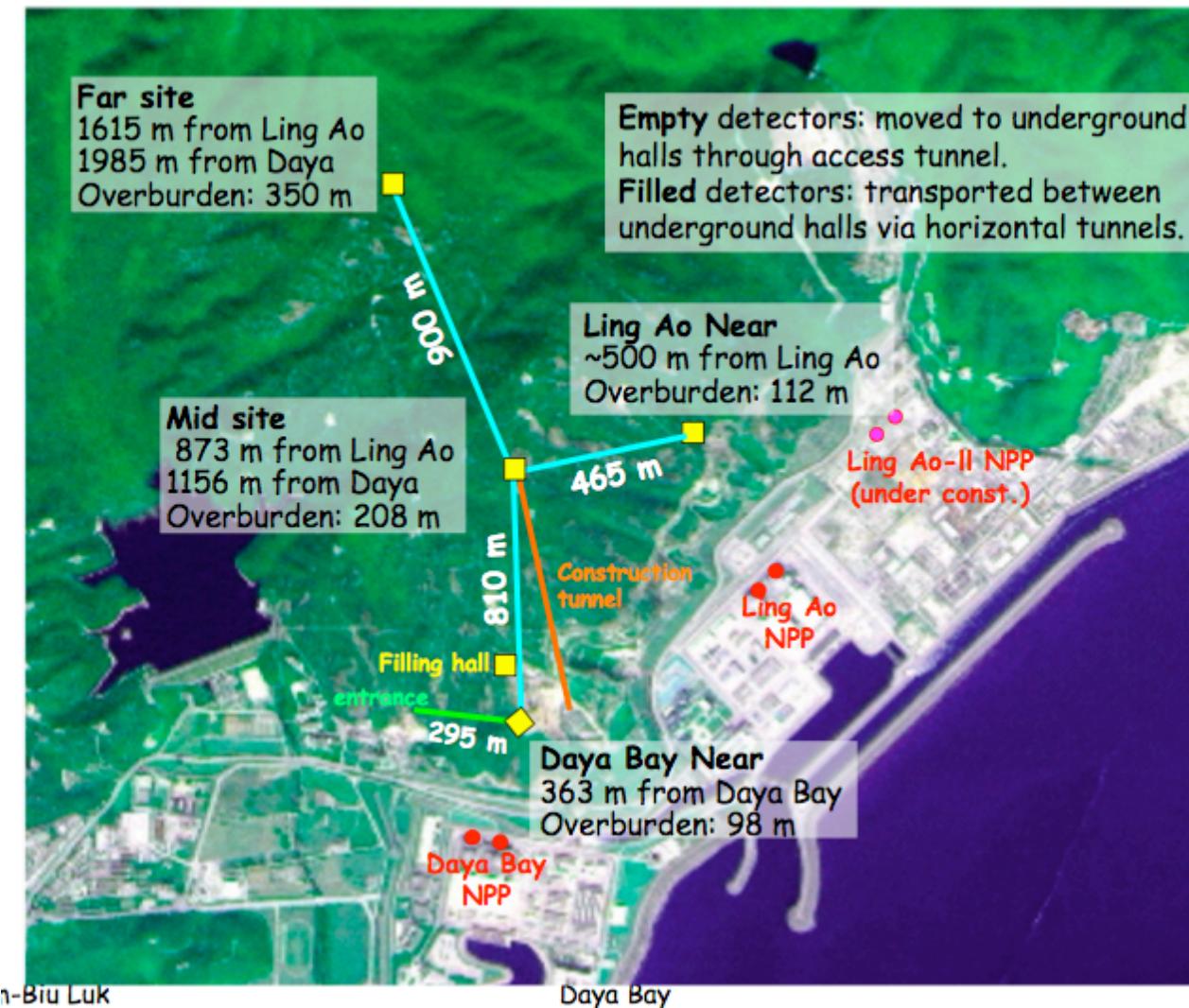
Example:
Double CHOOZ

CHOOZ
systematics
Was 2.7%



Reduction from 1% to 0.4% equivalent to a much longer run

Daya Bay



Proposed experiments

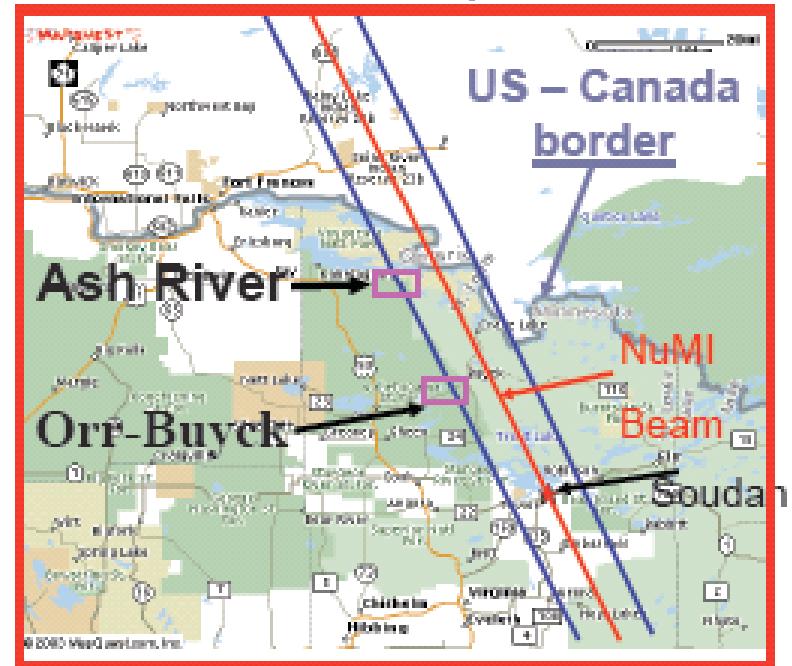
CHOOZ systematics was 2.7%

Experiment	Location	Sites	Systematics	Limit
Double CHOOZ	France	Near/Far	0.6%	0.03
Braidwood	USA	Near/Far	0.3%	0.005
Daya Bay	China	Near/Mid/Far	0.36-0.12%	0.009-0.006

Future (Accelerators)

T2K (Japan) 295km

NOvA (NUMI beam) 810km



Both projects are Long Baseline Off-axis projects.
They search for $\nu_\mu \sim \nu_e$ oscillations by searching for
 ν_e appearance in a ν_μ beam.
Determine that θ_{13} is non-zero. Measure it?
Mass hierarchy?

$$P(\nu_e \rightarrow \nu_\mu)$$

$$\begin{aligned}
P(\nu_e \rightarrow \nu_\mu) \approx & \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2} \\
& \pm \sin \delta_{\text{CP}} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\
& + \cos \delta_{\text{CP}} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\
& + \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}
\end{aligned}$$

Matter Effects

In vacuum and without CP violation:

$$P(\nu_\mu - \nu_e)_{\text{vac}} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta_{\text{atm}}$$

with $\Delta_{\text{atm}} = 1.27 \Delta m^2_{32} (L/E)$

For $\Delta m^2_{32} = 2.5 \times 10^{-3} \text{ eV}^2$ and for maximum oscillation

We need: $\Delta_{\text{atm}} = \pi/2 \rightarrow L(\text{km})/E(\text{GeV}) = 495$

For $L = 800 \text{ km}$ E must be 1.64 GeV , and for $L = 295 \text{ km}$ $E = 0.6 \text{ GeV}$

Introducing **matter** effects, at the first oscillation maximum:

$$P(\nu_\mu - \nu_e)_{\text{mat}} = [1 + - (2E/E_R)] P(\nu_\mu - \nu_e)_{\text{vac}}$$

with $E_R = [12 \text{ GeV}] [\Delta m^2_{32} / (2.5 \times 10^{-3})] [2.8 \text{ gm.cm}^{-3}/\rho] \sim 12 \text{ GeV}$

$+$ - depends on the mass hierarchy.

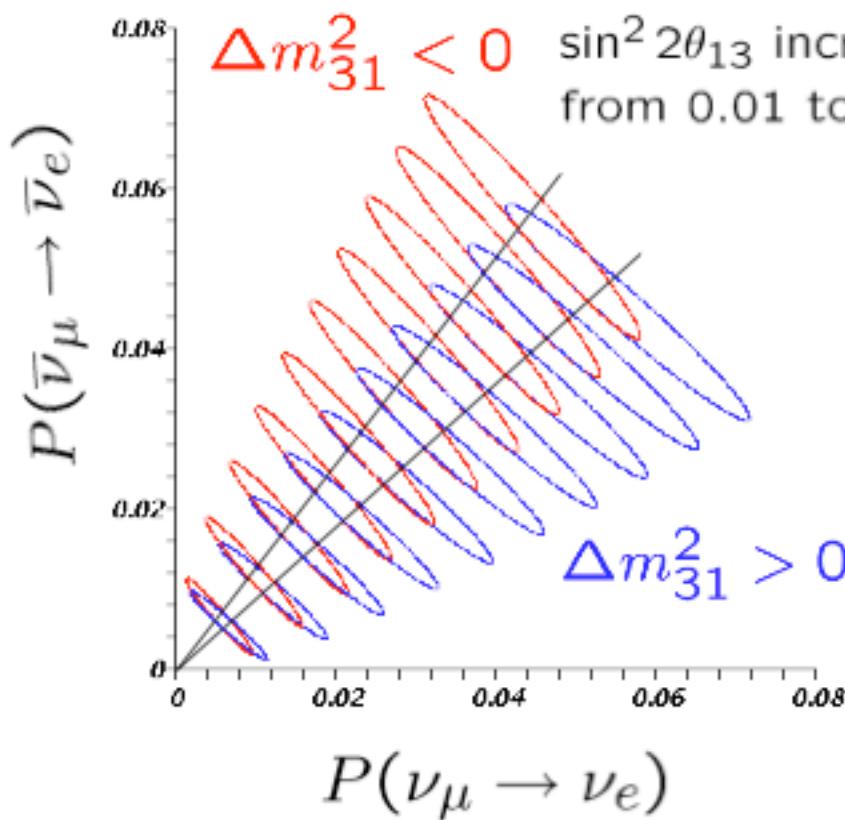
Matter effects **grow** with energy and therefore with **distance**.

3 times larger (27%) at NOvA (1.64 GeV) than at T2K (0.6 GeV)

T2K-NOvA Comparison

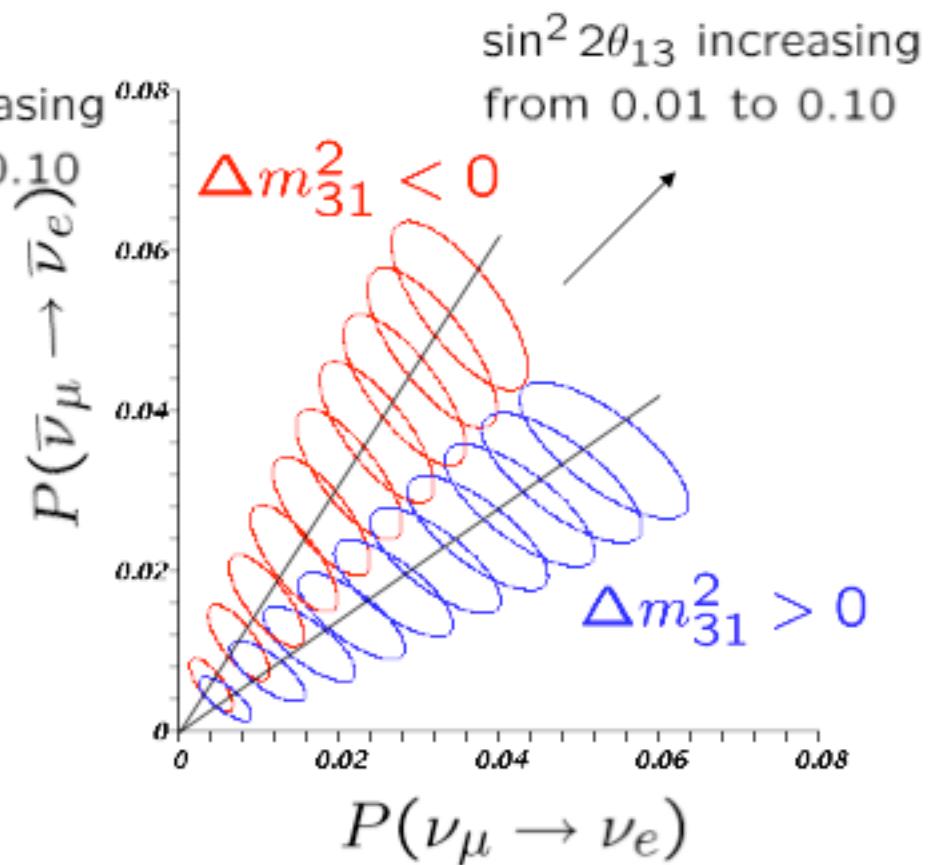
$E_\nu = 0.6 \text{ GeV}$, $L = 295 \text{ km}$

T2K Parameters



$E_\nu = 2.3 \text{ GeV}$, $L = 810 \text{ km}$

NOvA Parameters



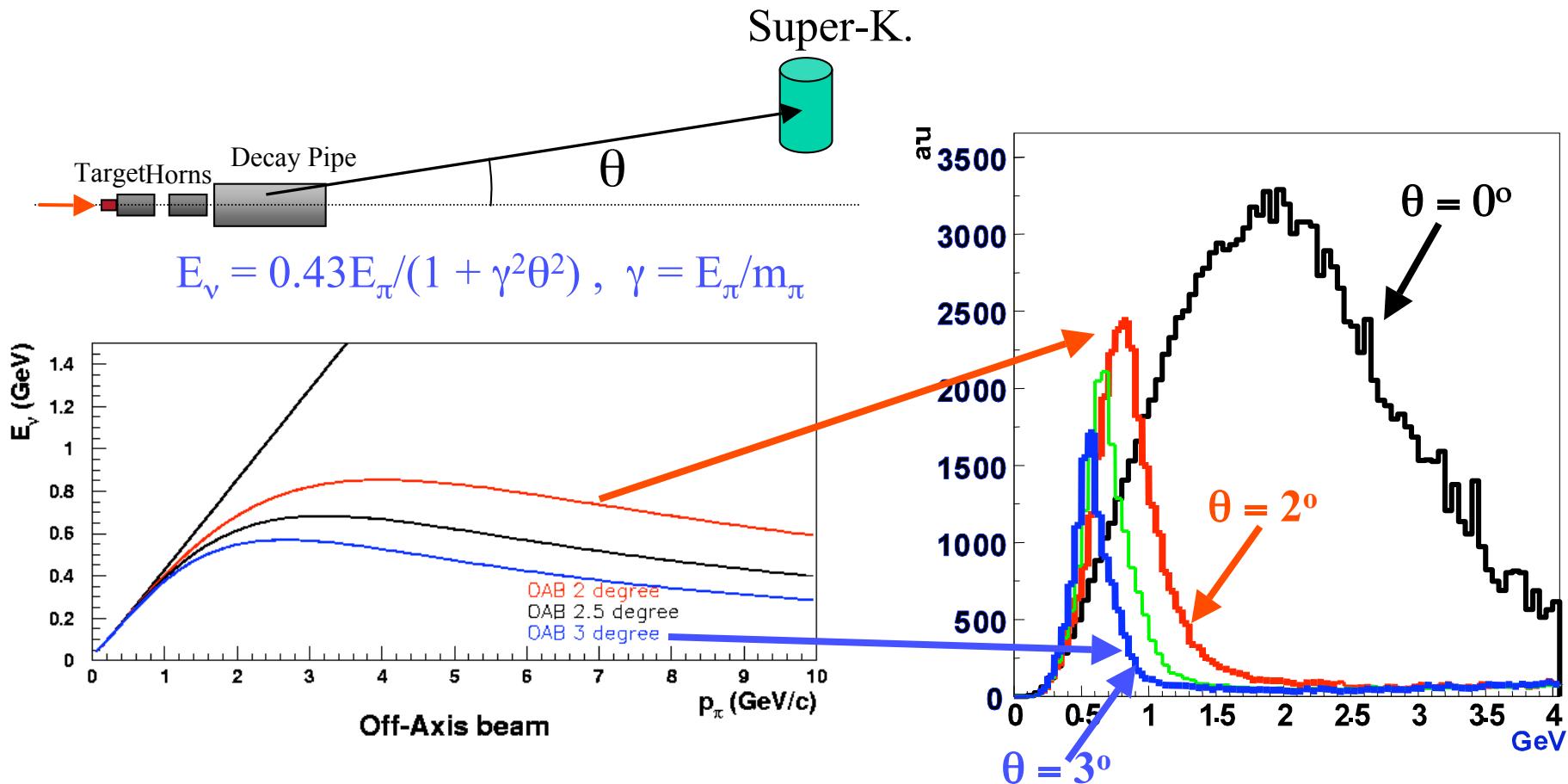
- Hierarchy has bigger effect in NOvA, because of increased matter effects at higher energy and distance.

OFF-AXIS Technique

Most decay pions give similar neutrino energies at the detector:

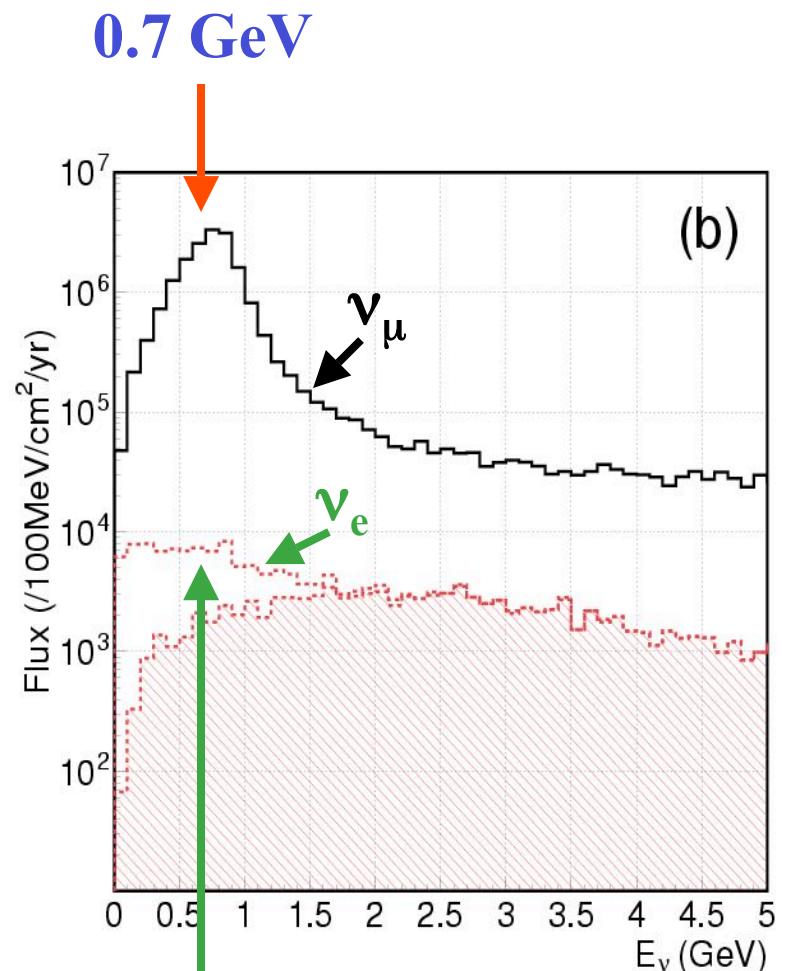
The Neutrino Energy Spectrum is narrow: know **where** to expect ν_e appearance
Can choose the off-axis angle and select the mean energy of the beam.

(**Optimizes** the oscillation probability)



T2K

- New 40 GeV Proton Synchrotron (JPARC)
- Reconstructed Super-K
- Near detector to measure unoscillated flux distance of 280 m (Maybe 2km also)
- JPARC ready in 2008
- T2K construction 2004-2008
- Data-taking starting in 2009

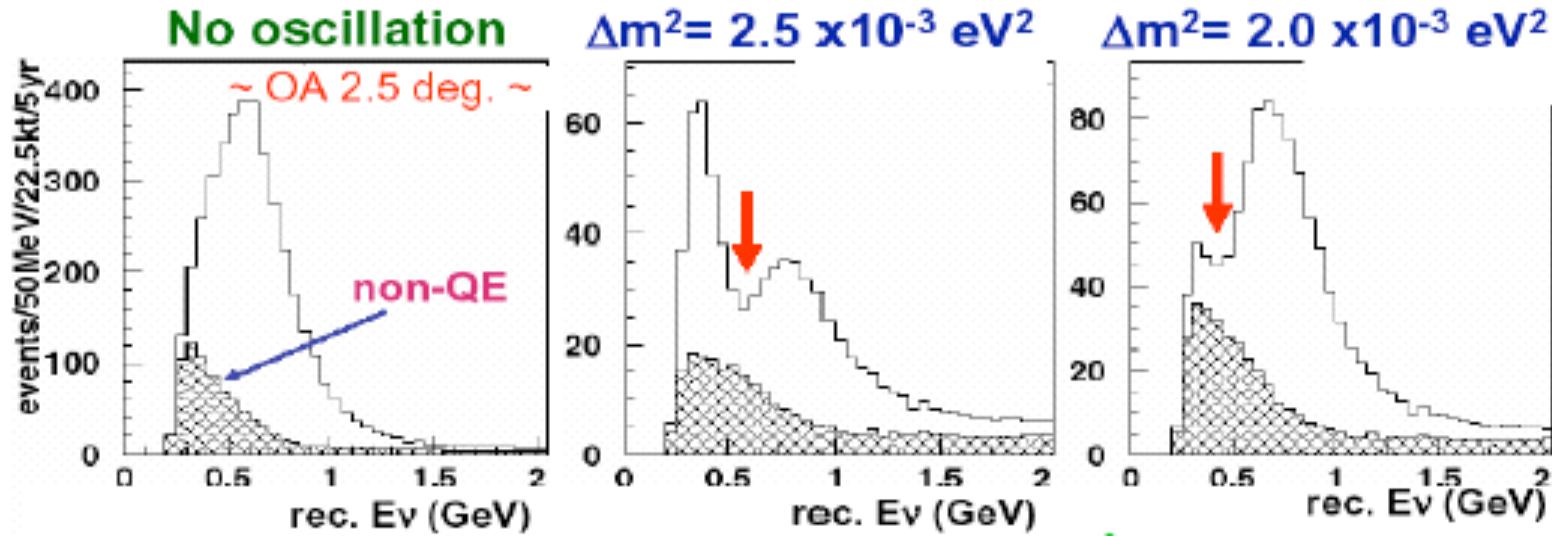


ν_e from K decays (hashed) and μ decays

0.4 % background at peak

Irreducible background to a $\nu_\mu \rightarrow \nu_e$ search.

ν_μ disappearance: Δm_{23}^2 and θ_{23} .



Position of dip

Δm_{23}^2 to an accuracy of $\sim 10^{-4} \text{ eV}^2$

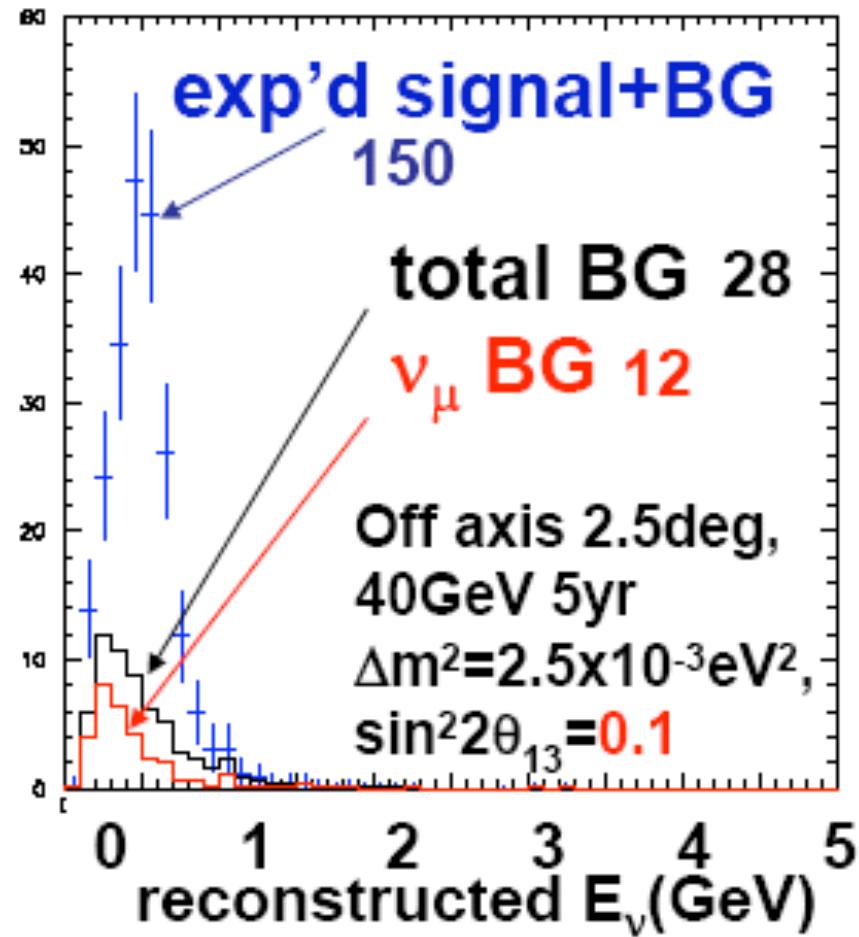
Depth of dip

$\sin^2 2\theta_{23}$ to an accuracy of 0.01

Factor of 10 improvement in both

Measurement of θ_{13} .

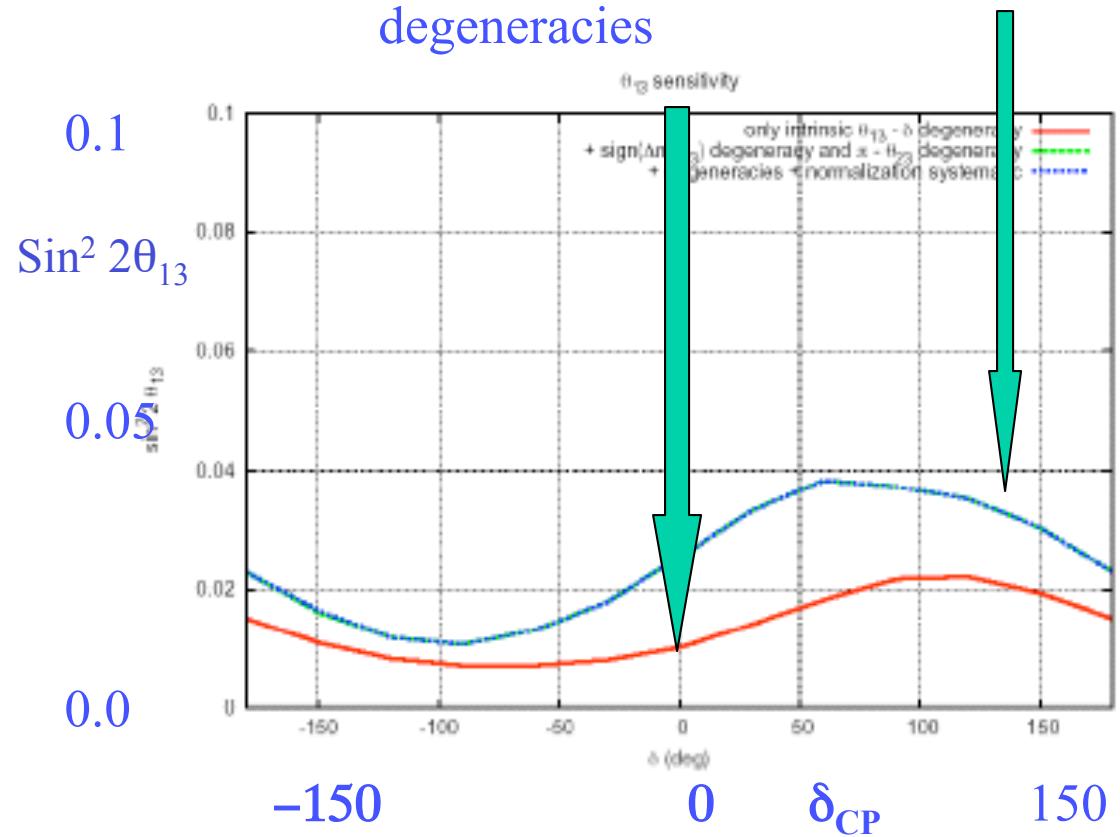
ν_e appearance



Sensitivity, correlations, degeneracies

Limit on
 $\sin^2 2\theta_{13}$ if we take into
account correlations and
degeneracies

Limit without taking into account
degeneracies



$$\sin^2 2\theta_{13} \sim 0.01 - 0.04$$

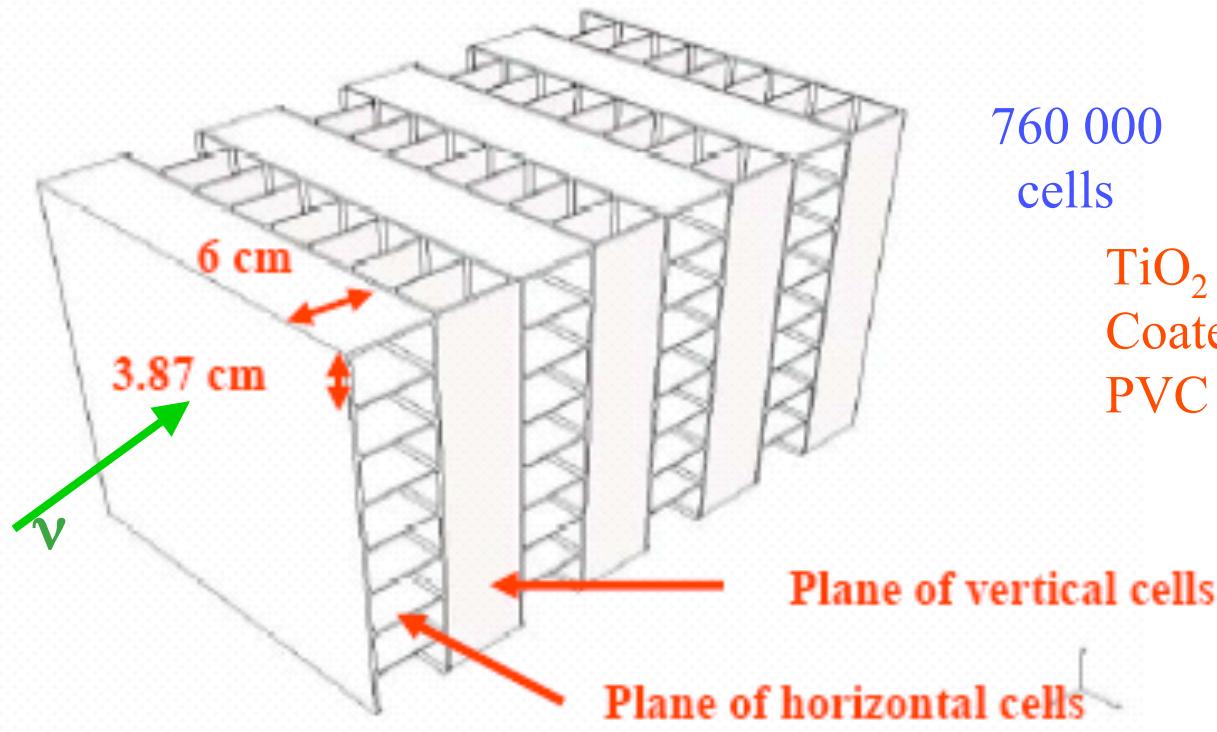
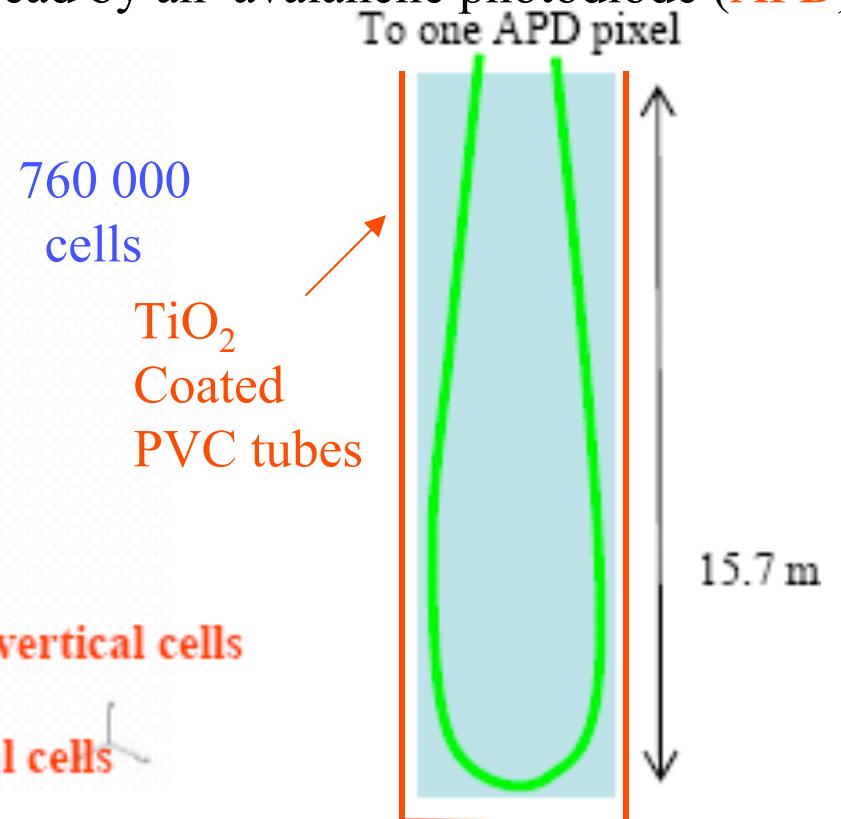
NO_vA Detector

Given relatively high energy of NUMI beam,
decided to optimize NO_vA for resolution of the mass hierarchy

Detector placed 14 mrad (12 km) Off-axis of the Fermilab NUMI beam (MINOS).
At Ash River near Canadian border (L = 810km) : New site. Above ground.

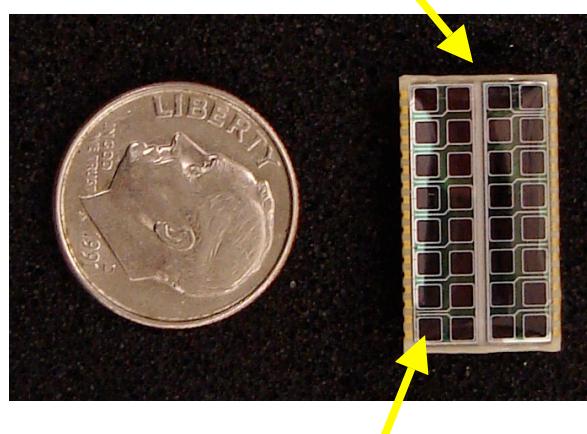
Fully active detector consisting of 15.7m long plastic cells filled
with liquid scintillator: Total mass 30 ktons.

Each cell viewed by a looped WLS fibre read by an avalanche photodiode (APD)

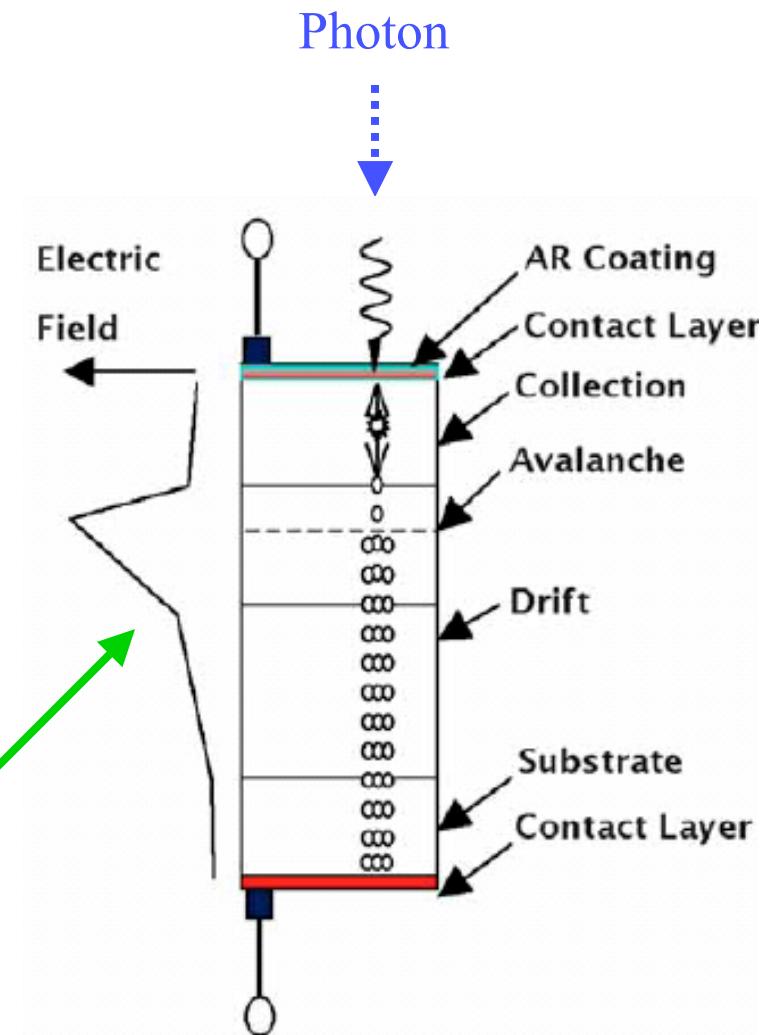


Avalanche Photodiode

- Hamamatsu 32 APD arrays



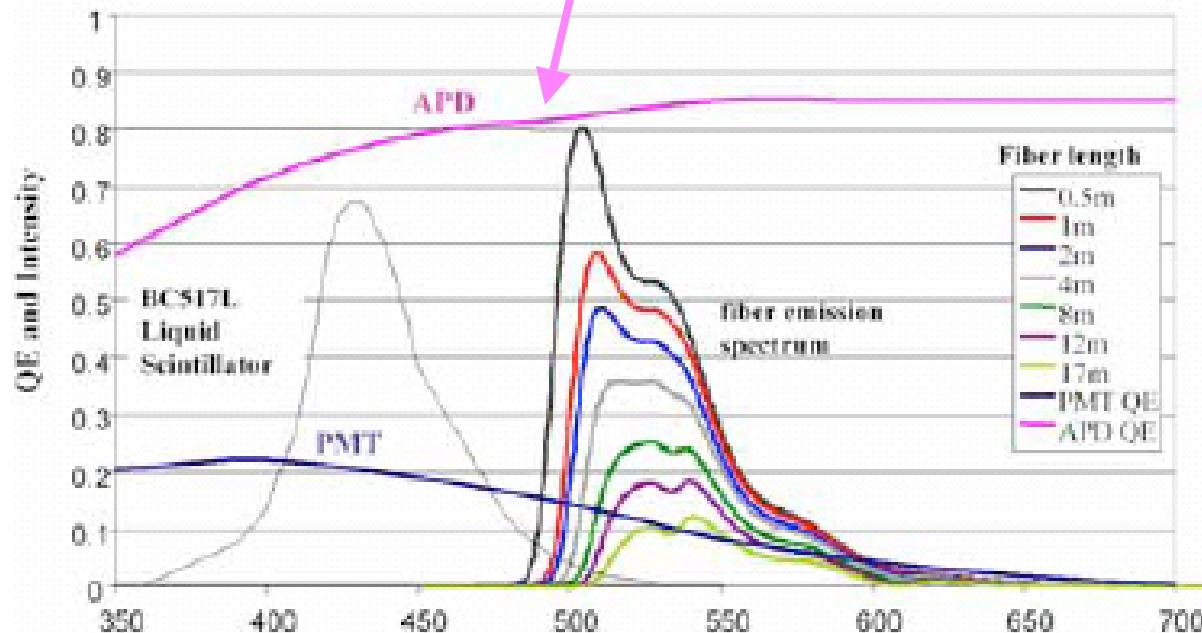
- Pixel size 1.8mm x 1.05mm
(Fibre 0.8mm diameter)
- Operating voltage 400 Volts
- Gain 100
- Needs amplifier (PMT usually 10^6)
- Operating temperature: -15°C
(reduces noise)



Asic for APD's: 2.5 pe noise
→ S/N $\sim 30/2.5 = 12$

NOvA

The quantum efficiency of APD's is much higher than a pm's: $\sim 85\%$. Especially at the higher wave lengths surviving after traversing the fibre.



Asic for APD's: 2.5 pe noise
→ S/N ~ 12

The Beam

PROTONS: 6.5×10^{20} protons on target per year.

Greatly helped by

➤ Termination of Collider programme by 2009.

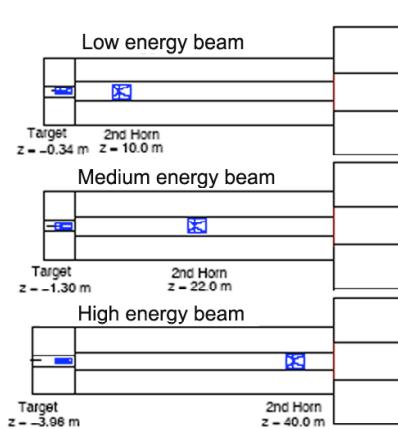
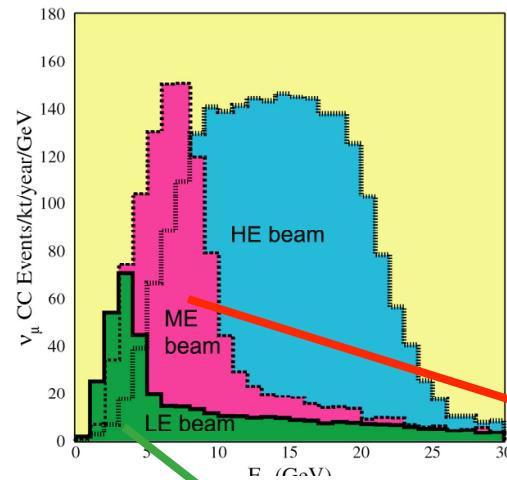
A gain of a factor of > 2 in numbers of protons delivered.

As of today, this extrapolates to: **4.8×10^{20}**

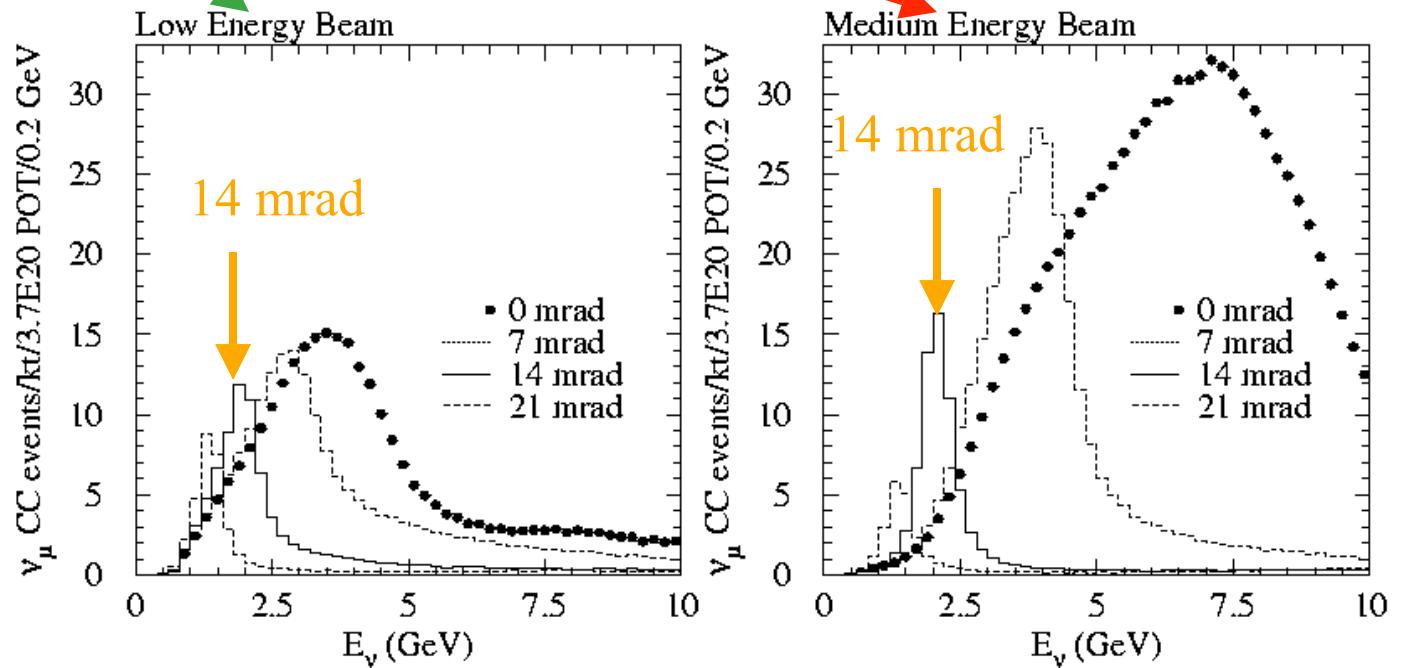
Longer term: Construction of an 8 GeV proton driver: x 4

25.2×10^{20} protons on target per year is the goal.

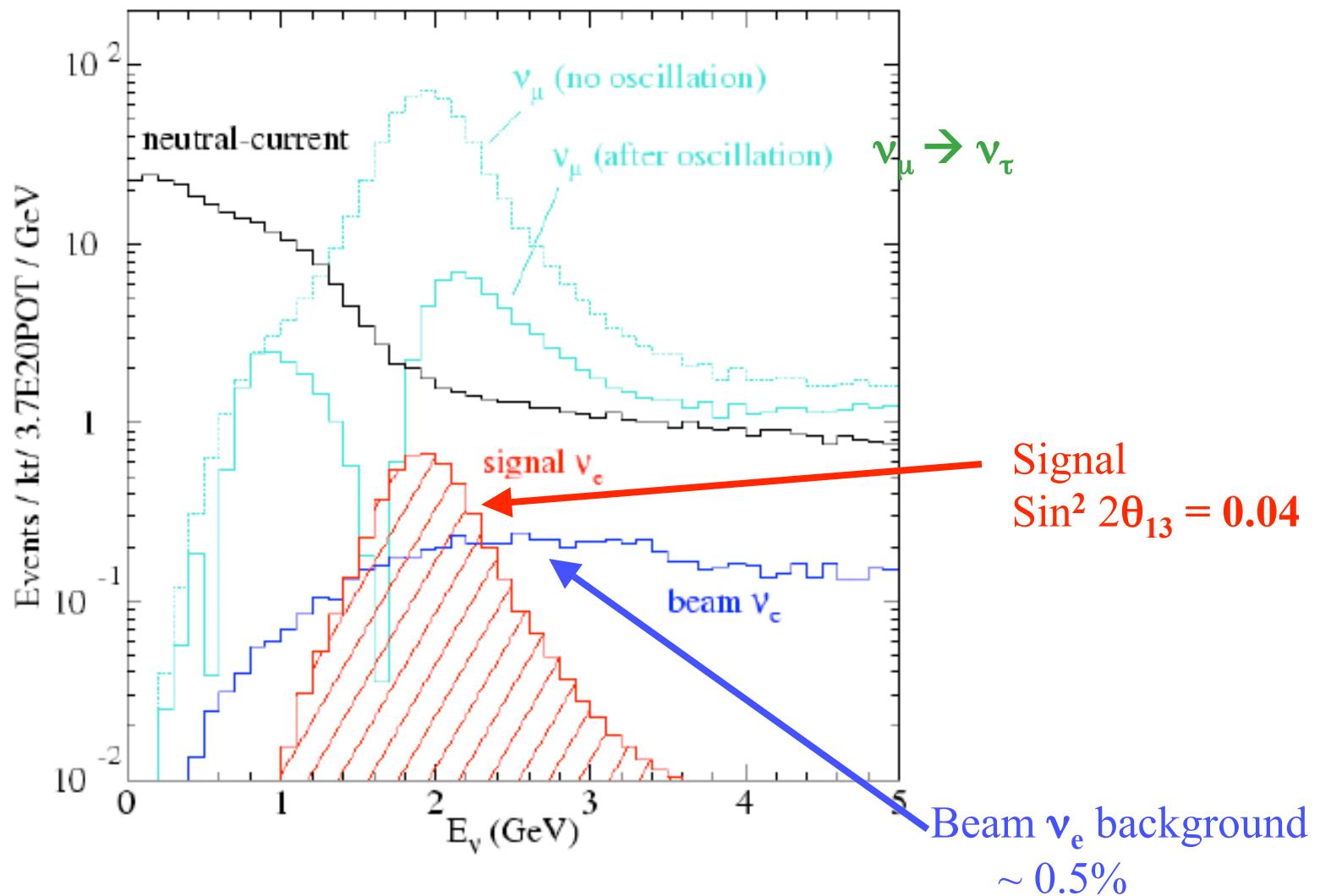
The Beam: Same NUMI beam as MINOS



Can select low, medium and high energy beams by moving horn and target
 Best is the Medium energy beam

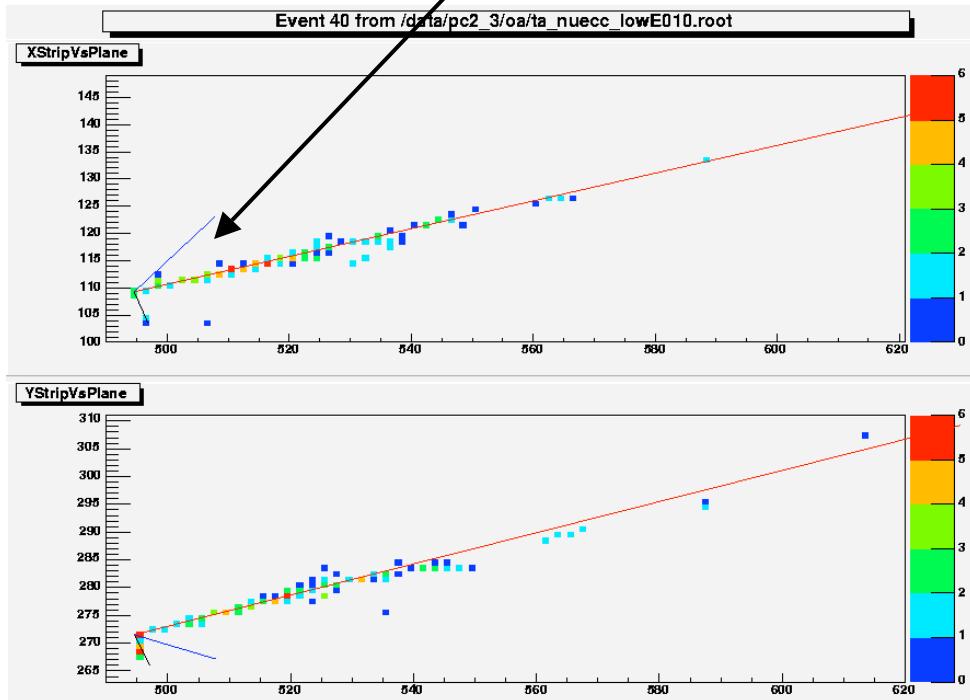
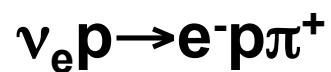


Beam spectra

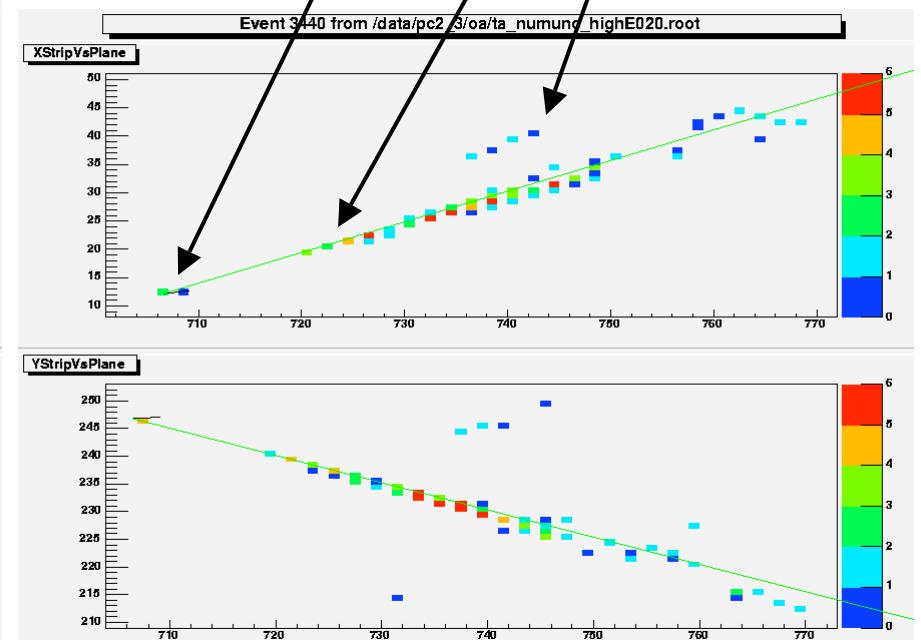
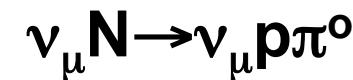


Typical events (Monte Carlo)

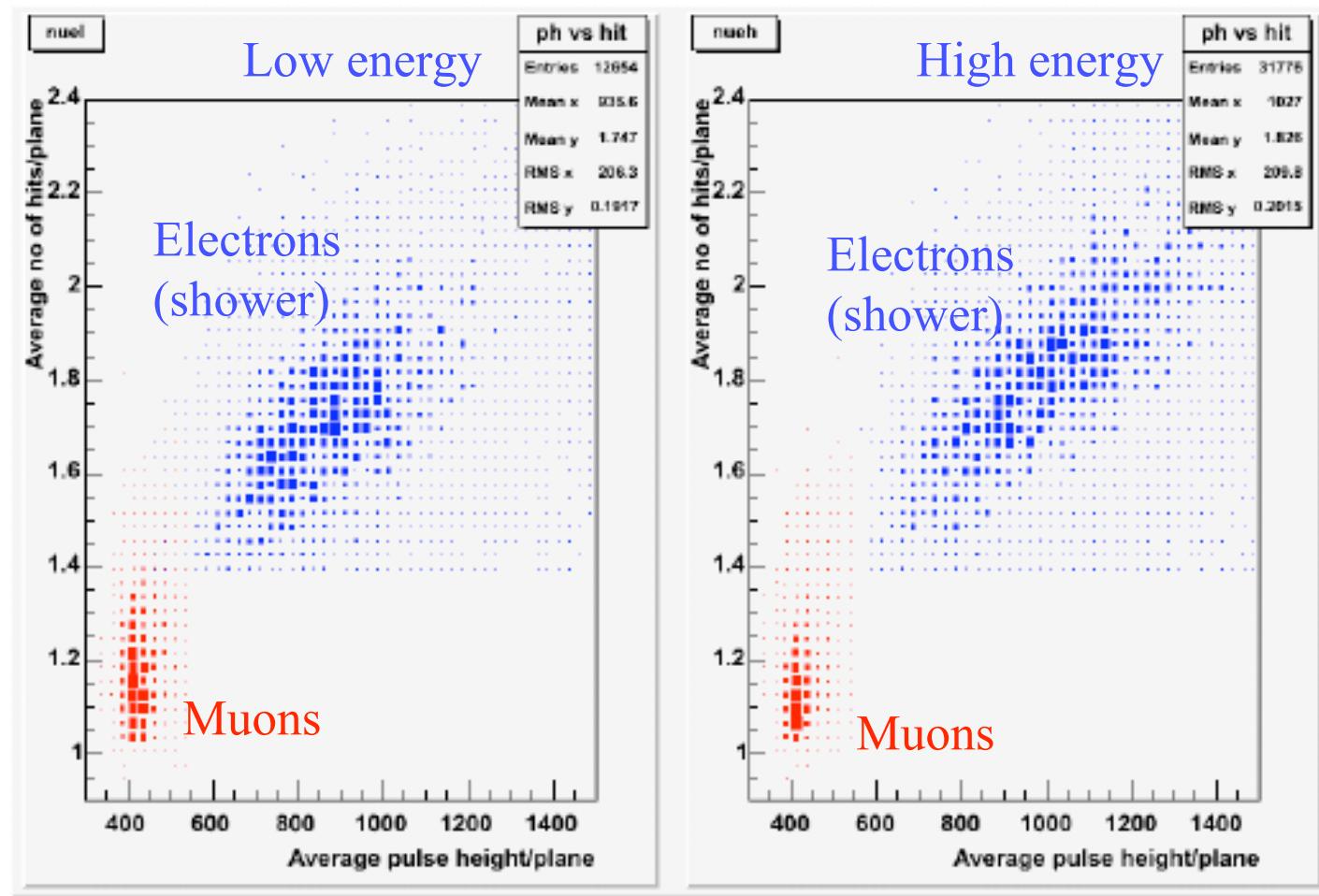
Electron: Shower attached to vertex



$\pi^0 \rightarrow \gamma\gamma$: Vertex separated from shower
Second shower



$\nu_\mu - \nu_e$ separation



π^0 in NC also a problem.

Signal ν_e efficiency: 24%.

ν_μ CC background 4×10^{-4}

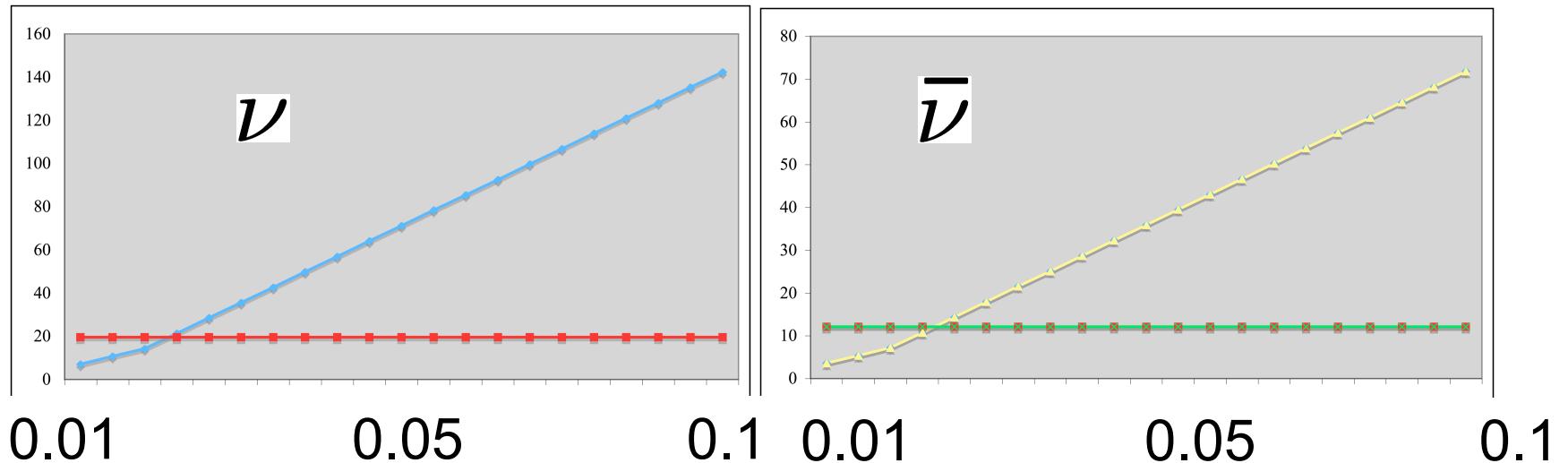
ν_μ NC background 2×10^{-3}

Summary of backgrounds

Background	Events	% Error	Error
Beam ν_e	11.9	7%	0.8
N_μ CC	0.5	15%	0.08
NC	7.1	5%	0.4
Total	19.5	5%	0.9

Signal and Backgrounds

- **Statistical Power:** why this is hard and we need protons



For $\sin^2 2\theta_{13} = 0.1$:

ν : S=142.1, B=19.5
 $\bar{\nu}$: S= 71.8, B=12.1

5 yrs at 6.5E20 pot/yr,
efficiencies included

θ_{23} ambiguity determination

Appearance: Accelerators

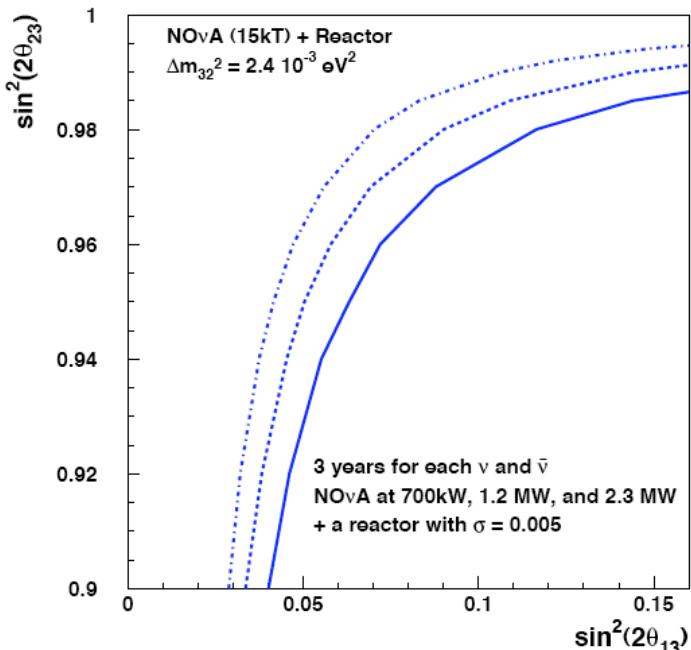
$$P(\nu_\mu - \nu_e)_{\text{vac}} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 [(\Delta m_{23}^2 L) / (4E_\nu)]$$

Disappearance: Reactors

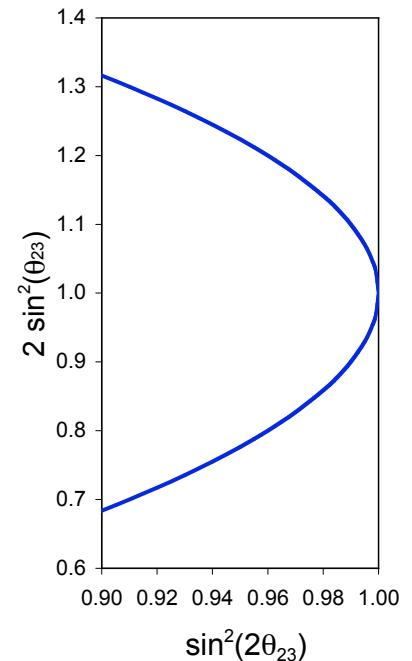
$$P_{ee} = 1 - \sin^2 2\theta_{13} \sin^2 [(\Delta m_{23}^2 L) / (4E_\nu)]$$

Combining results can determine θ_{23}

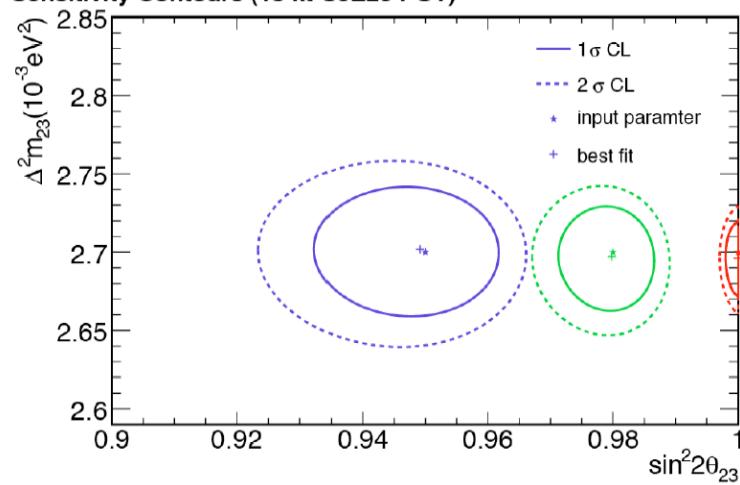
$\sin^2 2\theta_{23}$, say 0.92, $2\theta_{23}$ is 67° or 113° and θ_{23} is 33.5° or 56.5°



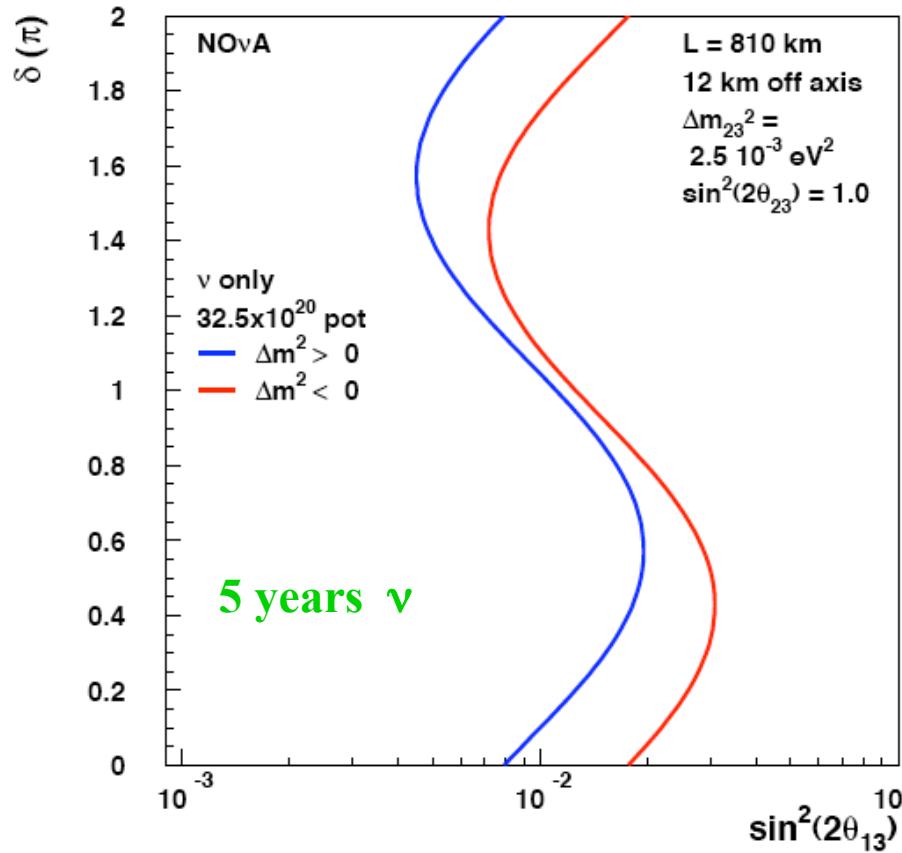
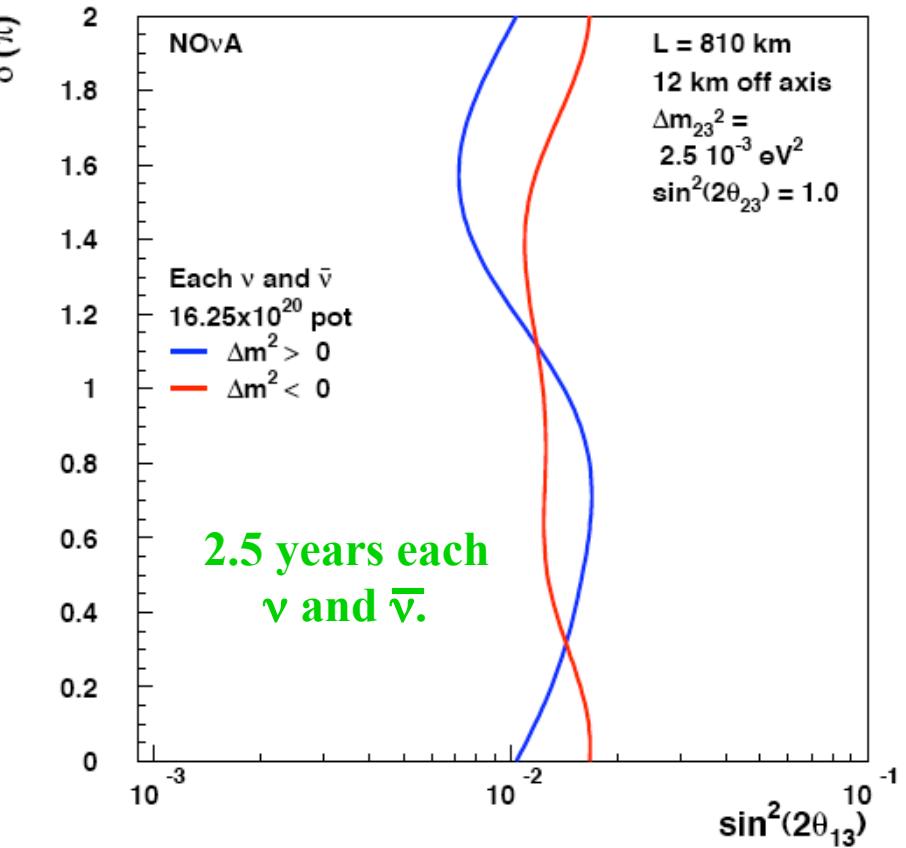
$2 \sin^2(\theta_{23})$ vs. $\sin^2(2\theta_{23})$



Sensitivity Contours (18 kt*36E20 POT)

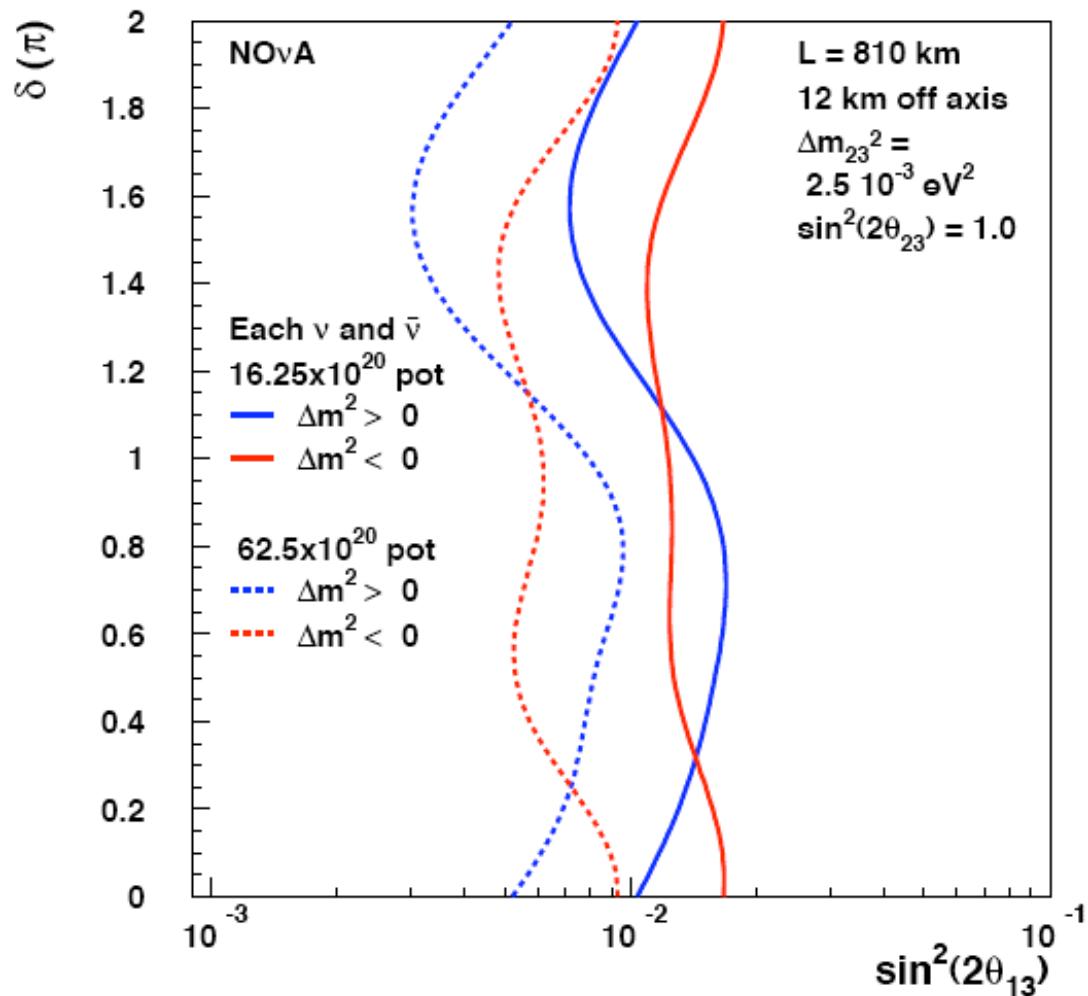


3 σ discovery limits for $\theta_{13} \neq 0$



Discovery limit is **better than 0.02** for **ALL δ 's** and **BOTH** mass hierarchies.

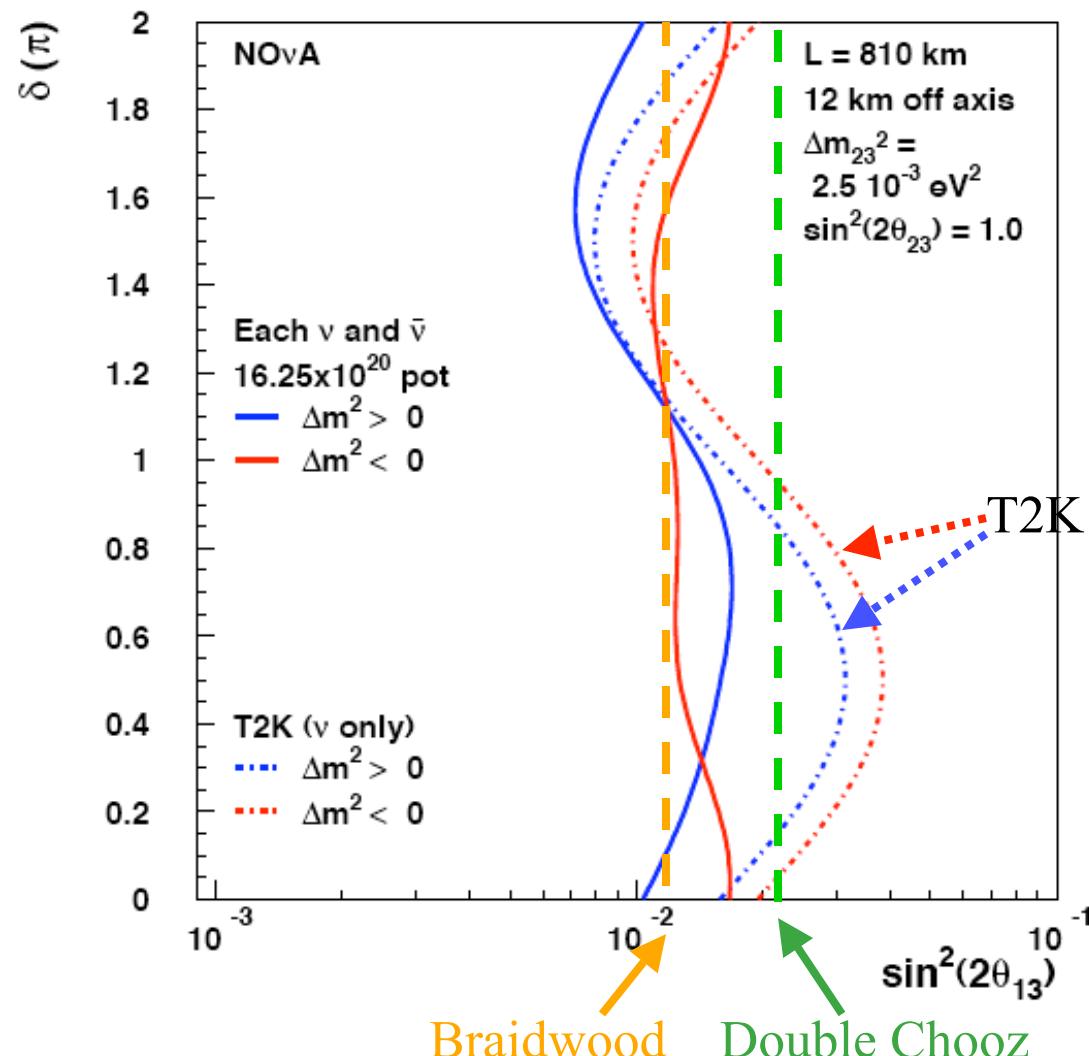
3 σ discovery limits for $\theta_{13} \neq 0$ Comparison with Proton Driver



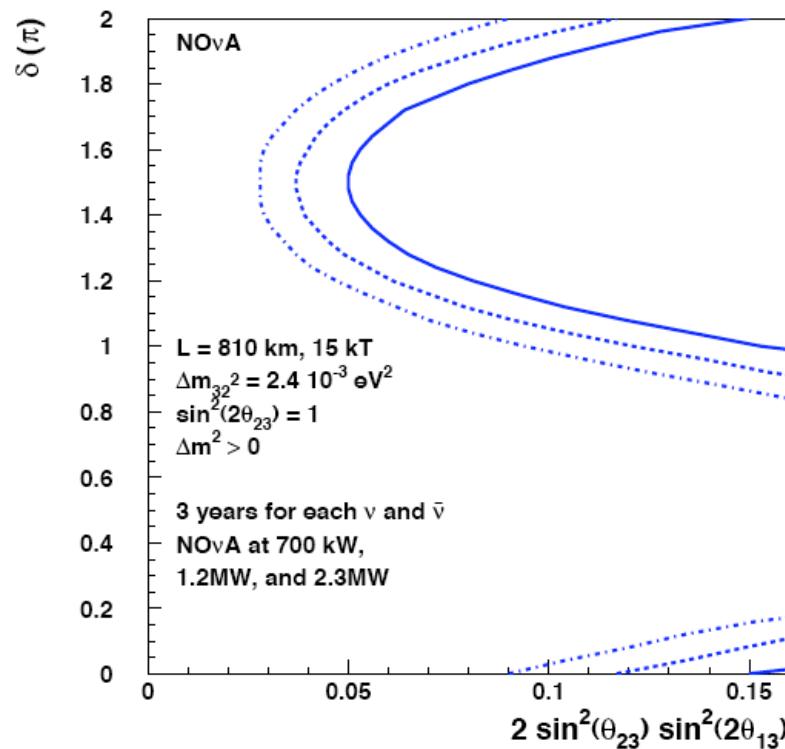
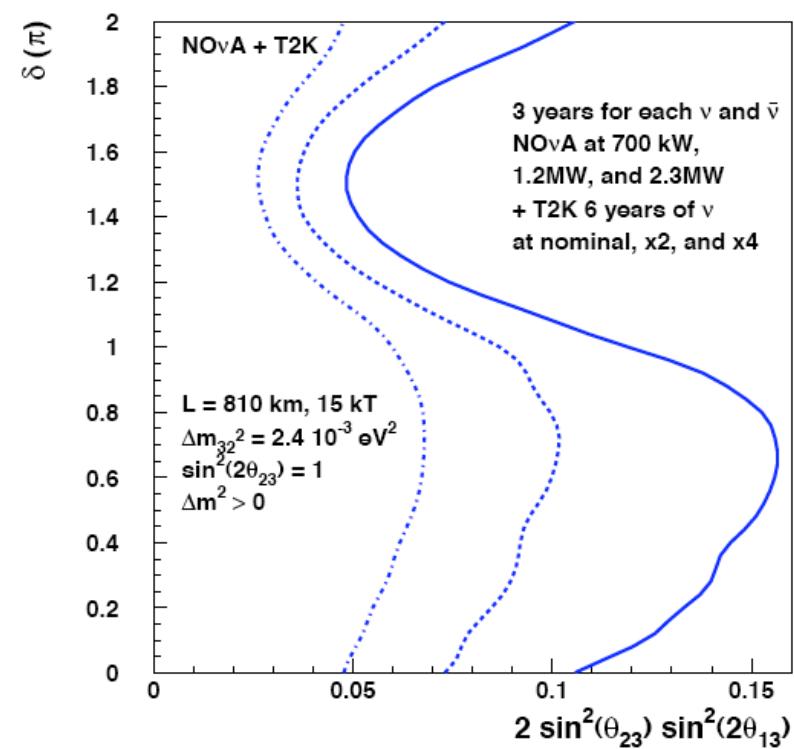
2.5 years each
 ν and $\bar{\nu}$.

3 σ discovery limits for $\theta_{13} = 0$

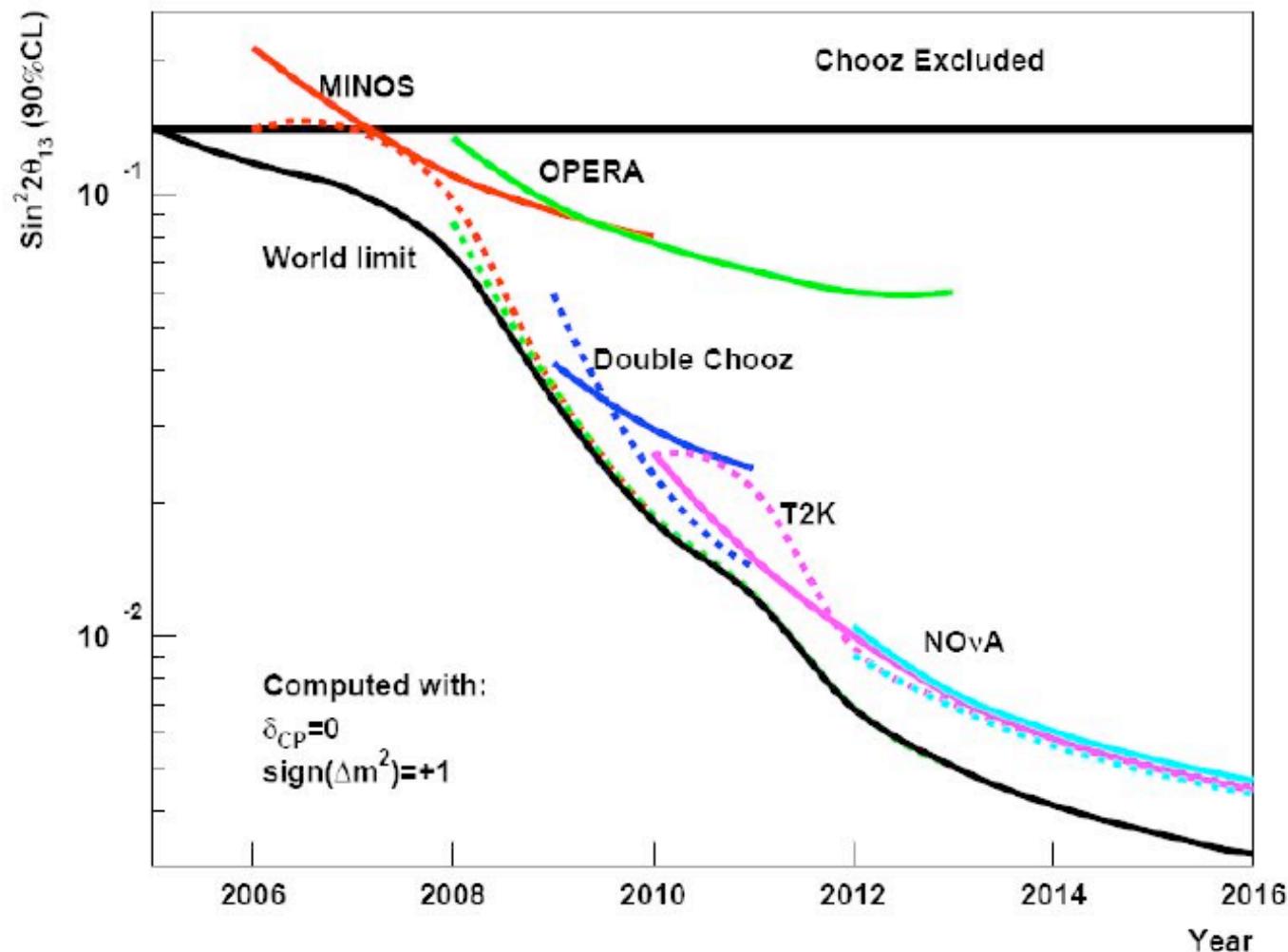
Comparison with T2K and 2 Reactor experiments



Resolution of mass hierarchy



The road ahead



Mass hierarchy with reactors ?

► $P(\nu_e \rightarrow \nu_x) =$

$$1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21} - \sin^2 2\theta_{13} c_{12}^2 \sin^2 \Delta_{31} - \sin^2 2\theta_{13} s_{12}^2 \sin^2 \Delta_{32}$$

The disappearance formula has 3 terms, each depending on a different Δ .

If we can measure energy with enough precision we should be able to disentangle the 3
For reactors antineutrinos the **first term** gives the biggest suppression because it is NOT
A function of $\sin^2 2\theta_{13}$.

The other 2 terms give smaller and higher frequency oscillations

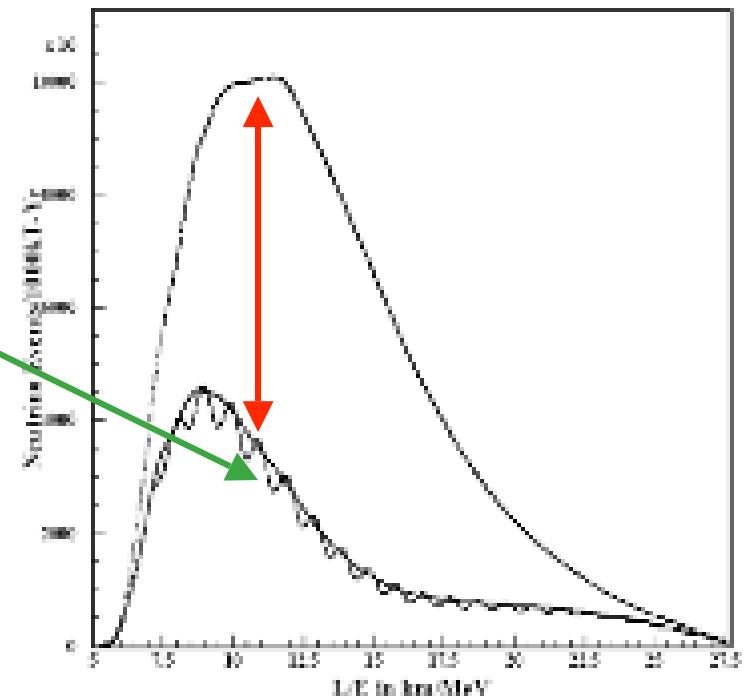
In order to enhance the effect of Δ_{31} and Δ_{32} ,
We should chose $L = 56$ km such that $\Delta_{21} = \pi/2$

Then we have **two other oscillations**,
with amplitudes
proportional to the factors
in the Δ_{31} and Δ_{32} terms.

The Δ_{31} term is proportional to $c_{12}^2 = 0.72$

The Δ_{32} term is proportional to $s_{12}^2 = 0.28$

A ratio of 2.57

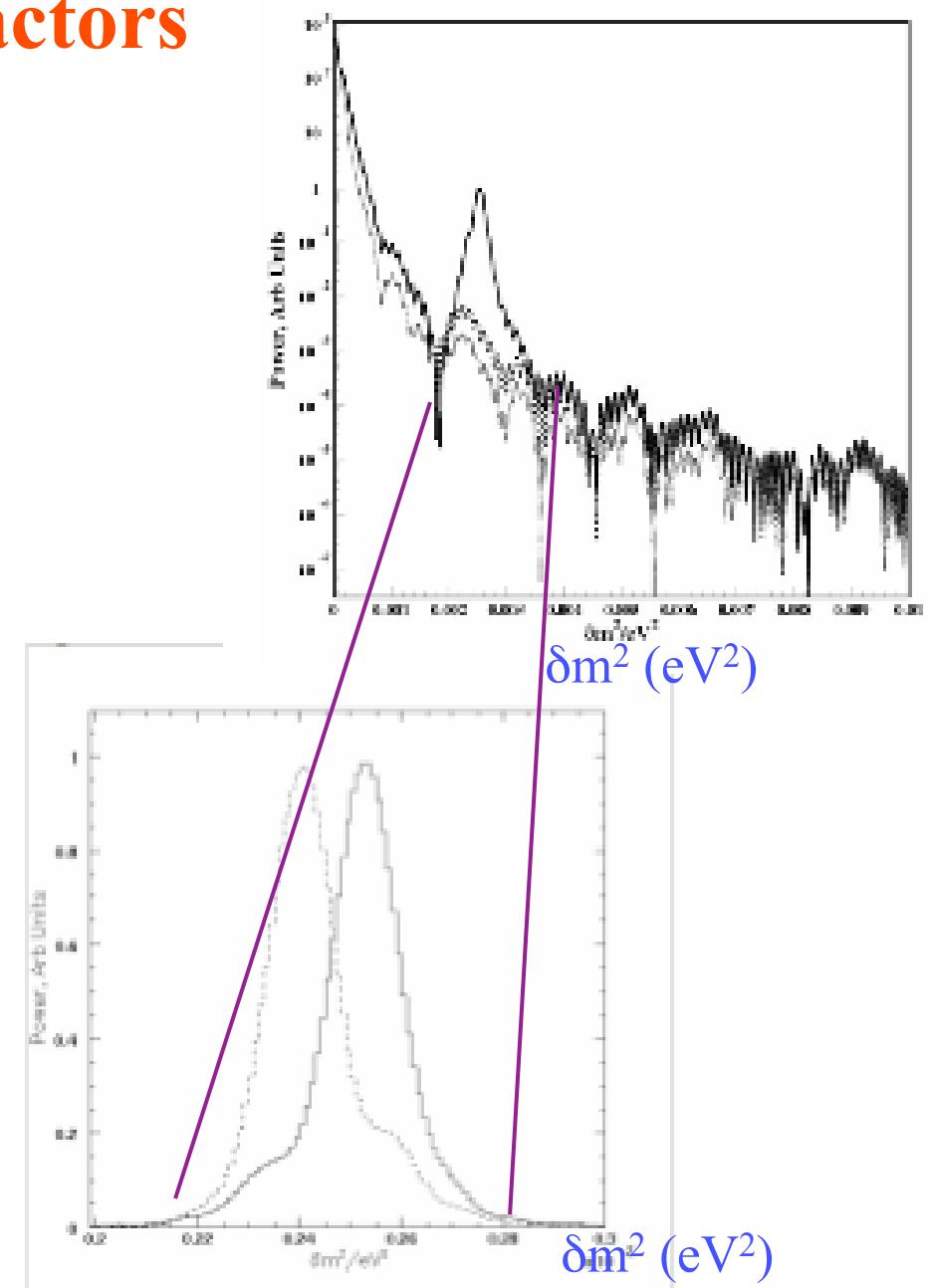


Mass hierarchy with reactors

- Fourier transform data.
- At small δm^2 , we see the Δ_{21} modulation.
- The big peak is due to Δ_{31} .
- For **NORMAL** hierarchy, the Δ_{32} term will have a slightly higher frequency, but a smaller amplitude.

Bump on **RIGHT** side.

- For **INVERTED** hierarchy, Bump on **LEFT** side.



$$P(v_e \rightarrow v_u)$$

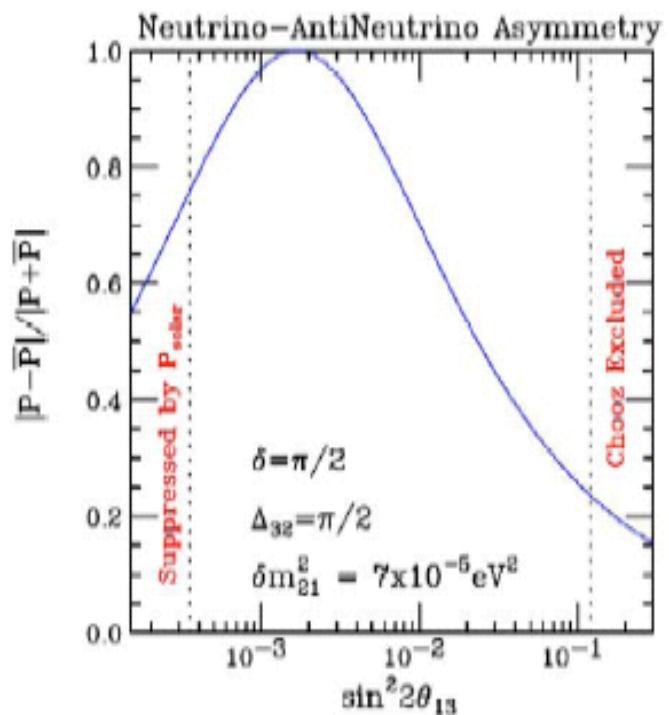
$$\begin{aligned}
 P(\nu_e \rightarrow \nu_\mu) \approx & \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2} \\
 \pm & \sin \delta_{\text{CP}} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\
 + & \cos \delta_{\text{CP}} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\
 + & \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2} \\
 = & F_1 \sin^2 2\theta_{13} + F_2 \Delta_{21} \sin \delta \sin 2\theta_{13} + F_3 \Delta_{21} \sin 2\theta_{13} + F_4 \Delta_{21}^2
 \end{aligned}$$

$$(P - \bar{P})/(P + \bar{P}) = \frac{2 F_2 \Delta_{21} \sin \delta \sin 2\theta_{13}}{2F_1 \sin^2 2\theta_{13} + 2F_3 \Delta_{21} \sin 2\theta_{13} + 2F_4 \Delta_{21}^2}$$

Behaviour of the CP asymmetry

$$(P - \bar{P})/(P + \bar{P}) = \frac{2 F_2 \Delta_{21} \sin \delta \sin 2\theta_{13}}{2F_1 \sin^2 2\theta_{13} + 2F_3 \Delta_{21} \sin 2\theta_{13} + 2F_4 \Delta_{21}^2}$$

- Dropping the Δ_{21} terms, we see that the CP asymmetry goes **UP** with smaller θ_{13} .
- (But the oscillation probabilities go **DOWN**.)
- At some small value of θ_{13} , the F4 term becomes important. We can then ignore the F2 and F3 terms in the denominator and the asymmetry goes **DOWN** with θ_{13} .

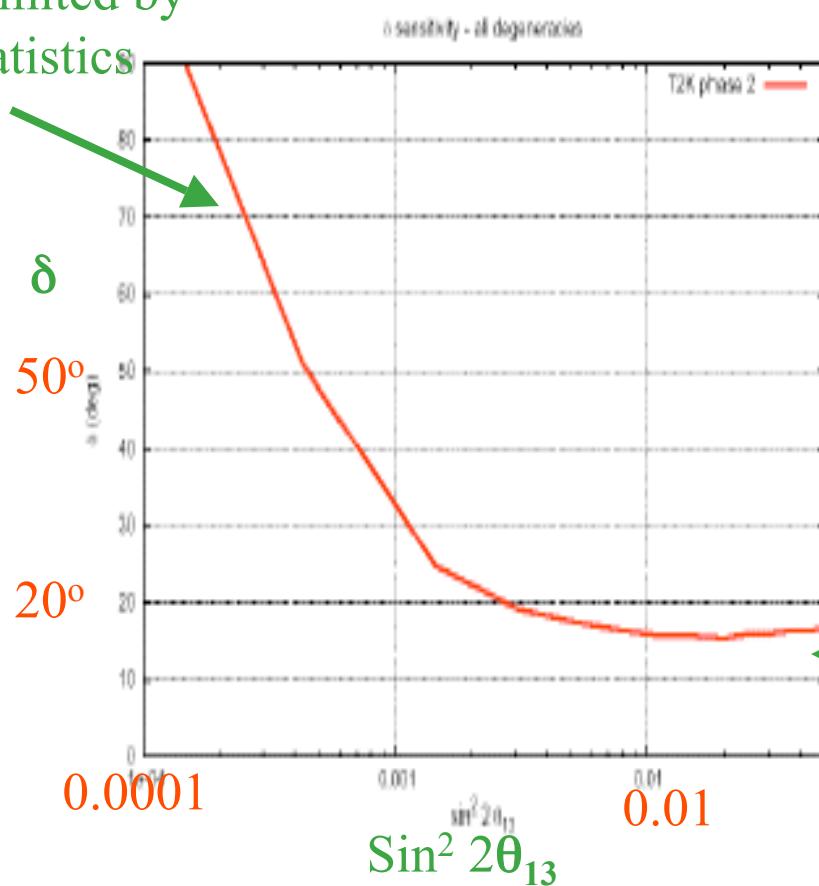
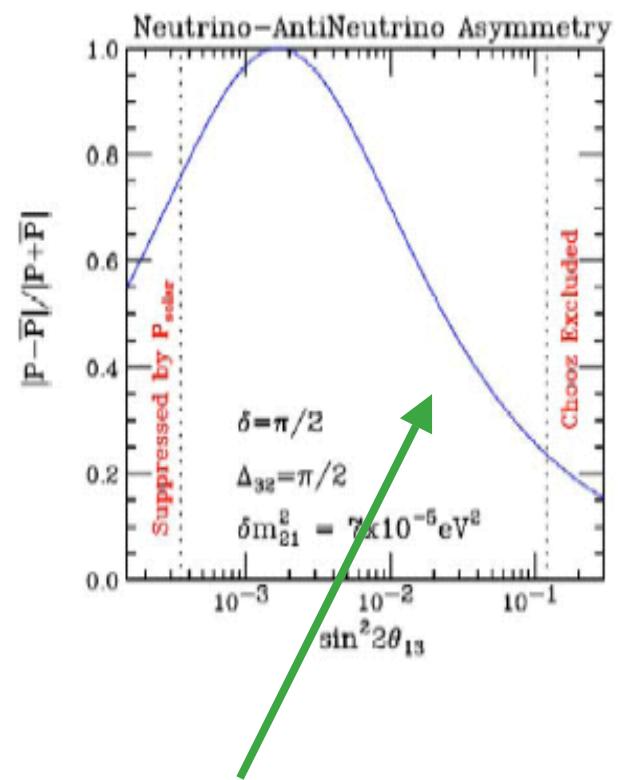


T2K II: Sensitivity to δ_{CP}

Definition: For each value of $\sin^2 2\theta_{13}$:

The minimum δ for which there is a difference
Of 3σ between CP and NO CP violation

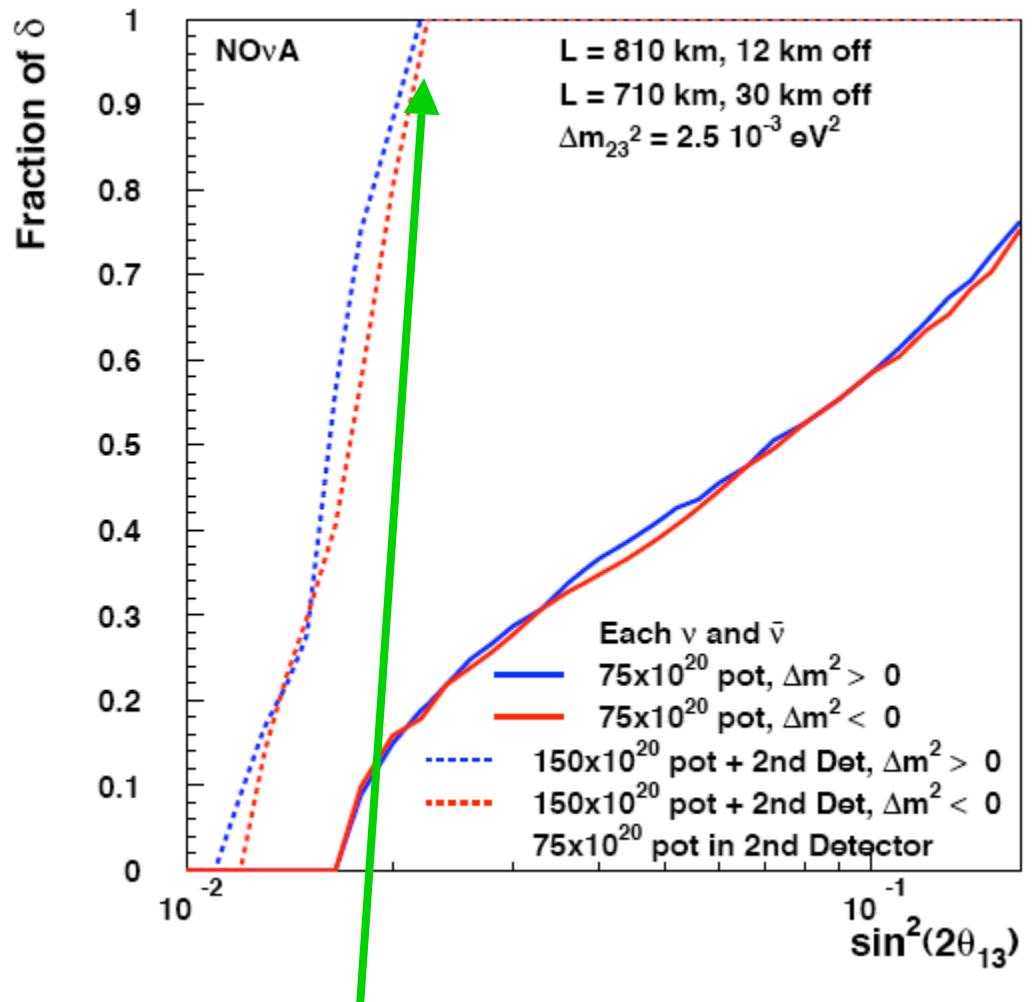
Limited by
statistics



CP violation asymmetry
($\nu, \bar{\nu}$ difference) decreases
with increasing $\sin^2 2\theta_{13}$

Looking further ahead

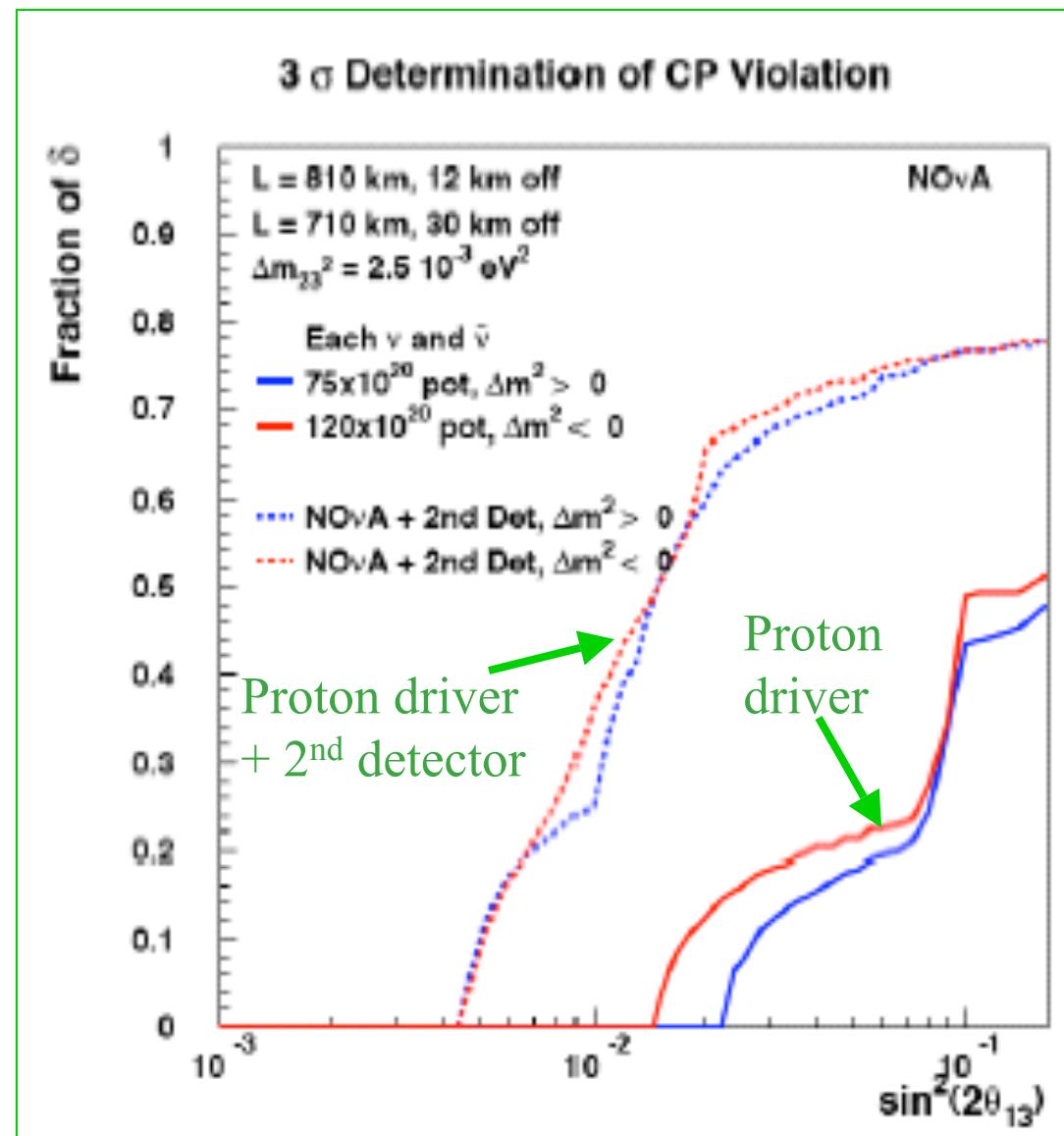
- With a proton driver, Phase II, the mass hierarchy can be resolved over 75% of δ near the CHOOZ limit.
- In addition to more protons in Phase II, to resolve hierarchy a **second detector** at the **second oscillation maximum** can be considered:
- $\Delta_{\text{atm}} = 1.27 \Delta m_{32}^2 (L/E) = 3\pi/2$.
 $L/E = 1485$, a factor of 3 larger than at 1st max.
For \sim the same distance, E is 3 times smaller:
matter effects are smaller by a factor of 3
- 50 kton detector at 710 km.
30km off axis (second max.)
6 years (3 ν + 3 $\bar{\nu}$)



Determines mass hierarchy for all values of δ down to $\sin^2 2\theta_{13} = 0.02$

CP reach

- To look for CP violation requires the proton driver.
- But combining with a second detector is what really becomes **SIGNIFICANT**.



$$P(\bar{\nu}_e \rightarrow x) \approx \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E} \right)$$

