

EDMS Document Number

1719330

Versatile Link Plus Project URL

<https://espace.cern.ch/project-Versatile-Link-Plus/SitePages/Home.aspx>

Date: 14 May 2018

Revision No. v.1.2

Versatile Link Plus Technical Specification, part 2.1.3

Quad Laser Driver

Valid for VTRx+ prototypes only

Abstract

This document describes the mechanical, electro-optic, and environmental specifications of the Transimpedance Amplifier for the receiving path of the front-end Transceiver (VTRx+) module for use in the Versatile Link Plus common project for optical data transmission in HL-LHC detectors.

<i>Prepared by</i>	<i>Checked by</i>	<i>Approved by</i>
J. Troska CERN/EP-ESE 1211 Geneva 23 Switzerland <i>jan.troska@cern.ch</i>	VL+ Project Team	VL+ WP leaders

Document History

Rev. No	Date	Pages	Description of Changes
1.0	10 Aug 2017	All	First Version
1.1	06 Oct 2017	All	Updated jitter specifications
1.2	14 May 2018	8,9 14-23	Updated padframe drawing and description Added Sections on Configurations and SEU tolerance

Specification Tree

The hierarchy of Versatile Link Plus specifications is shown below. The position of the present specification document is highlighted in bold. Line items in italic will not result in specification documents but are shown to ease understanding of the structure.

EDMS Document Number

Part 1. System 1719328

Part 2. Components

Part 2.1 Front-End Transceiver Module 1719329

Part 2.1.1 Laser diode (VCSEL) die 1762631

Part 2.1.2 Photodiode die 1762632

Part 2.1.3 **Laser Driver** 1719330

Part 2.1.4 Transimpedance Amplifier 1719333

Part 2.2 Back-End Transceiver 1762899

Part 2.3 Passive Optical Components 1762900

Part 2.3.1 Optical Fibre TBD

Part 2.3.2 Optical Connectors TBD

Contents

Introduction	5
1 General Specifications	7
2 Mechanical Specifications	8
3 Interface Specifications	10
4 Electrical Specifications	11
5 Environmental Specifications	13
6 Configuration	14
6.1 Initial Power-Up	14
6.2 Reset behaviour	14
6.3 I ² C interface	14
Start and stop conditions	14
Bit transfer	14
Acknowledge	14
Write operation	15
Read operation	15
6.4 Register Descriptions	18
Global Control Register (GCR) – Address 0x00	18
??? Register (ODC) – Address 0x01	18
Channel x Control Register (CxCR) – Address 0x04/0x08/0x0C/0x10	18
Channel x Bias Current Register (CxBC) – Address 0x05/0x09/0x0D/0x11	19
Channel x Modulation Current Register (CxMC) – Address 0x06/0x0A/0x0E/0x12	19
Channel x Emphasis Amplitude Register (CxEA) – Address 0x07/0x0B/0x0F/0x13	19
Clock configuration register (CCNF) – Address 0x1C	20
Power-on reset status register (PORS) – Address 0x1D	20
Single Event Upset counter register (SEUC) – Address 0x1E	20
Clock Spying enable register (CSE) – Address 0x1F	20
7 Tolerance to single event upsets	21
7.1 Clock generator	21
Triplication testing	21
Frequency of the oscillator	22
7.2 System reset generator	23

Introduction

The Versatile Link Plus (VL+) project [1] aims to provide a multi-gigabit per second optical physical data transmission layer for the readout and control of High Luminosity LHC (HL-LHC) experiments. The implementation of these links is flexible and can be configured at build time or by masking unused channels designated by the user. A basic point-to-point bidirectional system architecture is proposed for which components are currently being assessed and developed. One example is shown in figure 1.

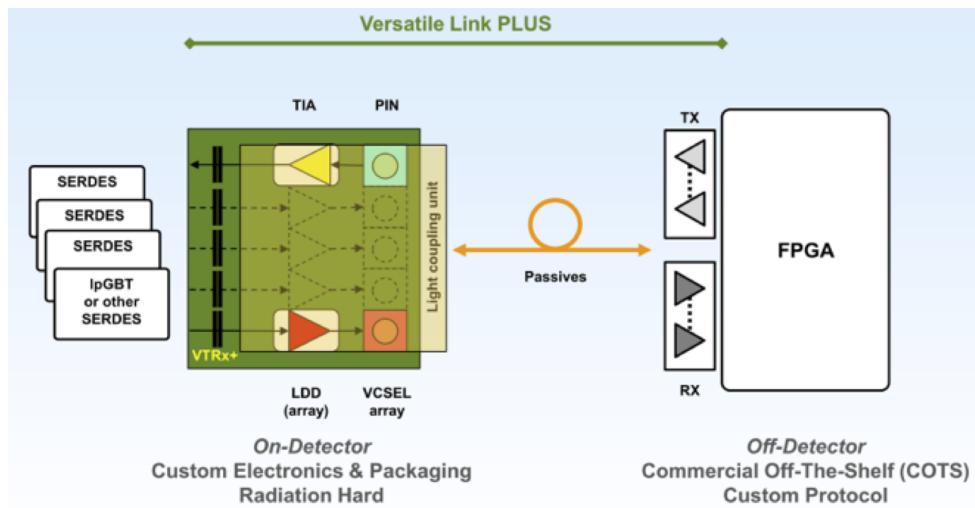


Figure 1: Versatile Link Plus (VL+) Architecture.

The link operation is described in Part 1: System specification, while link components have their dedicated specification in Part 2: Components. This document, Part 2.1.3, describes the specifications and environmental requirements for the quad laser driver for use in front-end Versatile Link Plus transceiver modules. The VL+ front-end components are placed on detector, at the front-end, and are therefore subjected to the harshest environmental conditions and must be capable of reliable operation under those conditions.

The VTRx+ modules may contain the following custom developed or qualified parts (depending upon VTRx+ variant) and channel location (Tx = transmitter, Rx = receiver, TRx = transceiver):

1. VCSEL laser diode array or single die(Tx)
2. Radiation tolerant laserdriver ASICs in quad-channel format (Tx).
3. PIN diode single die (Rx)
4. Radiation tolerant transimpedance amplifier (TIA) in single-channel format (Rx).

Back-end components are placed off detector, outside the harsh radiation and magnetic field environments to which the front-end components are subjected. No specific form factor is required by the project the user is free to select from a variety of commercially available products which however must meet the VL+ performance specifications for back-end components. A variety of devices are expected to be available for use as parallel back-end components and these have been evaluated for recommendations for edge mounted and mid-board mounted products. All back-end Tx, Rx, and TRx modules are commercial devices compliant to 10 Gbps standards. When used in the VL+, the Rx channels operate at data rates up to 10 Gbps in the uplink direction (in which signals propagate from front-end to back-end) and Tx channels operate nominally at 2.5 Gbps in the downlink direction (in which signals propagate from back-end to front-end).

The link supports multi-mode (MM) operation with a center-wavelength of 850nm. The fiber cables are commercial laser optimized MM fibers, with a radiation resistant section inside the detector if required by the final application.

The link is naturally bi-directional. However, matching the number of front-end to back-end (uplink) and back-end to front-end (downlink) transmissions is not a requirement. It is therefore possible to have separate multi-channel front-end transmitters and single-channel front-end transceivers in the system.

The Quad Laser Driver described in this document is a quad-channel ASIC that will fit inside the VTRx+ module as shown in figure 2. The channel-pitch of 250 μm is required to match a VCSEL array coupled to optical fibre ribbon.

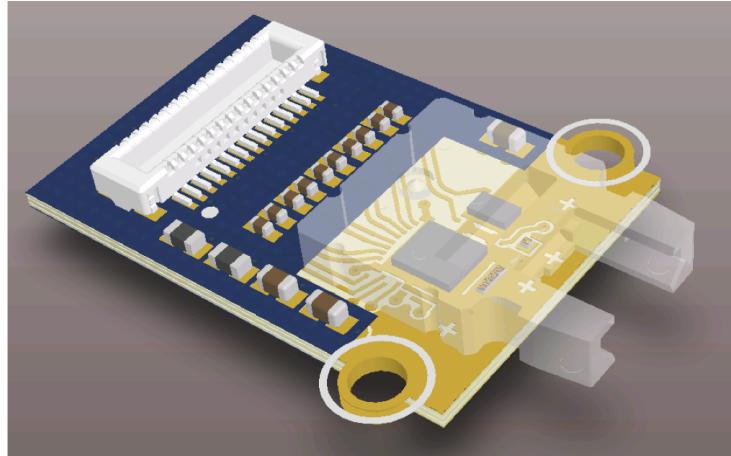


Figure 2: VTRx+ module implementation cartoon, showing the possible position of the Quad Laser Driver as the larger of the two grey boxes on the PCB.

1 General Specifications

Table 1: VL+ Quad Laser Driver general specifications.

#	Specification	Min.	Typ.	Max.	Unit
1.1.1	Datarate	1 (TBC)	5	10	Gb/s
1.1.2	Number of Channels		4	4	

Figure 3: VL+ Quad Laser Driver overview schematic showing main functional blocks.

2 Mechanical Specifications

Outline mechanical dimensions are given in table 2 and the pad frame of the Quad Laser Driver is shown in figure 4. The overall chip dimensions are 1695 μm by 1900 μm . Pad pitch and size are chosen to ease wire-bonding and thus ultimately the module integration. Power, Ground, and configuration bond pads are mirrored so as to allow connection from one side or the other in case more than one quad laser driver dice is placed in an optical module in close proximity. The high-speed input and output channel pitch is 250 μm for integration with VCSEL arrays on that pitch. Pad pitch is 100 μm , which leads to a pad separation of 30 μm . Power and ground pads have been enlarged where possible to allow multiple bond wires to be placed on them. Pad assignment and dimensions are given in table 3

Table 2: VL+ Quad Laser Driver mechanical specifications.

#	Specification	Min.	Typ.	Max.	Unit
2.1.1	Die length		1900		μm
2.1.2	Die width		1695		μm
2.1.3	Die thickness ^a		200		μm
2.1.4	Number of pads			42	

^a Final production target. Prototype dies are 275 μm thick.

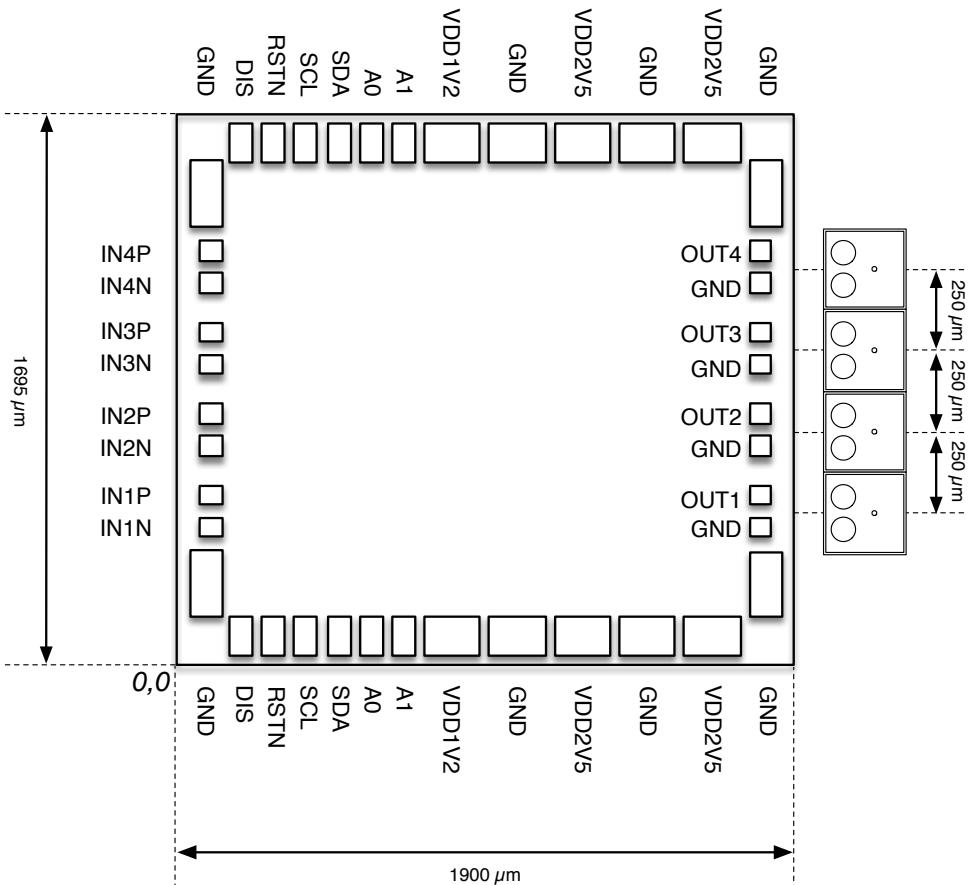


Figure 4: Quad Laser Driver pad frame with dimensions. Pad pitch is 100 μm . Schematic representation of 4-channel VCSEL array shown for reference.

Table 3: VL+ Quad Laser Driver pad details. Positions are pad centres relative to origin in figure 4.

Pad Name	X position (μm)	Y position (μm)	Width (μm)	Height (μm)	Description
GND	86.925	253.225	100	200	Ground connection
DIN1-	95.620	425.725	66	54	Inverting CML input for channel 1
DIN1+	95.620	525.725	66	54	Non-inverting CML input for channel 1
DIN2-	95.620	675.725	66	54	Inverting CML input for channel 2
DIN2+	95.620	775.725	66	54	Non-inverting CML input for channel 2
DIN3-	95.620	925.725	66	54	Inverting CML input for channel 3
DIN3+	95.620	1025.725	66	54	Non-inverting CML input for channel 3
DIN4-	95.620	1175.725	66	54	Inverting CML input for channel 4
DIN4+	95.620	1275.725	66	54	Non-inverting CML input for channel 4
GND	81.120	1448.225	100	200	Ground connection
DIS	196.120	1610.810	70	116	Active-high optical output disable for all channels
RSTN	296.120	1610.810	70	116	Active-low chip reset
SCL	396.120	1610.810	70	116	I ² C clock input, external pull-up to 1.2 V required
SDA	496.120	1610.810	70	116	I ² C data input/output, external pull-up to 1.2 V required
A0	596.120	1610.810	70	116	I ² C address bit 5 of <6:0>, internal pull-down
A1	696.120	1610.810	70	116	I ² C address bit 6 of <6:0>, internal pull-down
VDD12	846.120	1610.810	170	116	Analogue power at 1.2 V for all functions except output stage
GND	1046.120	1610.810	170	116	Ground connection
VDD25	1246.120	1610.810	170	116	Analogue power at 2.5 V to power output stage with sufficient voltage headroom for VCSEL
GND	1446.120	1610.810	170	116	Ground connection
VDD25	1646.120	1610.810	170	116	Analogue power at 2.5 V to power output stage with sufficient voltage headroom for VCSEL
GND	1811.120	1448.225	100	200	Ground connection
OUT4	1796.620	1275.725	66	54	Current-mode high-speed modulated output for VCSEL Anode connection of channel 4
GND	1796.620	1175.725	66	54	Ground connection for VCSEL Cathode
OUT3	1796.620	1025.725	66	54	Current-mode high-speed modulated output for VCSEL Anode connection of channel 3
GND	1796.620	925.725	66	54	Ground connection for VCSEL Cathode
OUT2	1796.620	775.725	66	54	Current-mode high-speed modulated output for VCSEL Anode connection of channel 2
GND	1796.620	675.725	66	54	Ground connection for VCSEL Cathode
OUT1	1796.620	525.725	66	54	Current-mode high-speed modulated output for VCSEL Anode connection of channel 1
GND	1796.620	425.725	66	54	Ground connection for VCSEL Cathode
GND	1811.120	253.225	100	200	Ground connection
VDD25	1646.120	92.185	170	116	Analogue power at 2.5 V to power output stage with sufficient voltage headroom for VCSEL
GND	1446.120	92.185	170	116	Ground connection
VDD25	1246.120	92.185	170	116	Analogue power at 2.5 V to power output stage with sufficient voltage headroom for VCSEL
GND	1046.120	92.185	170	116	Ground connection
VDD12	846.120	92.185	170	116	Analogue power at 1.2 V for all functions except output stage
A1	696.120	92.185	70	116	I ² C address bit 6 of <6:0>, internal pull-down
A0	596.120	92.185	70	116	I ² C address bit 5 of <6:0>, internal pull-down
SDA	496.120	92.185	70	116	I ² C data input/output, external pull-up to 1.2 V required
SCL	396.120	92.185	70	116	I ² C clock input, external pull-up to 1.2 V required
RSTN	296.120	92.185	70	116	Active-low chip reset
DIS	196.120	92.185	70	116	Active-high optical output disable for all channels

3 Interface Specifications

Table 4: VL+ Quad Laser Driver interface specifications.

#	Specification	Min.	Typ.	Max.	Unit
3.1.1	Supply Voltage 2V5	2.25	2.5	2.75	V
3.1.2	Supply Current 2V5 ^a		50		mA
3.1.3	Supply Current 2V5 ^b		100		mA
3.2.1	Supply Voltage 1V2	1.08	1.2	1.32	V
3.2.2	Supply Current 1V2 ^a		50		mA
3.2.3	Supply Current 1V2 ^b		100		mA

^a 8 mA bias, 4 mA modulation, all channels on, pre-emphasis disabled

^b 12 mA bias, 6 mA modulation, all channels on, pre-emphasis enabled

4 Electrical Specifications

Table 5: VL+ Quad Laser Driver functional specifications at data-rate of 10 Gb/s. Bias current is defined as the logical ONE level and modulation current is the difference between logical ZERO and ONE levels.

#	Specification	Min.	Typ.	Max.	Unit
4.1.1	Input rise/fall time ^a		30	40	ps
4.1.2	Differential Input Voltage	200		1200	mV
4.1.3	Differential Input return loss (DC to 5 GHz) (5GHz <f>10GHz) (10 GHz to 20 GHz)		-16 -14+13.33log ₁₀ (f/5/5)	-3	dB
4.2.1	Power Supply Rejection Ratio ^b	50			dB
4.2.2	Control Pin V _{low}	-0.5	0	0.6	V
4.2.3	Control Pin V _{high}	1.0	1.2	1.4	V
4.3.1	Output bias current	0		15	mA
4.3.2	Output bias step size	95	100	105	μA
4.3.3	Output bias zero offset	0		100	μA
4.3.4	Output voltage ^c	Vdd (3.2.1) - 0.2			V
4.4.1	Output rise/fall time ^{a,d}		24	30	ps
4.4.2	Total Jitter ^{e,f}			22	ps
4.4.3	Deterministic Jitter ^{e,f}			8	ps
4.4.4	Laser dynamic impedance		50	100	Ω
4.4.5	Output modulation current ^d	0		10	mA
4.4.6	Output modulation step size ^d	95	100	105	μA
4.4.7	Output modulation zero offset ^d	0		100	μA
4.4.8	Output Eye Mask ^g		Fig.5		

^a 20-80%

^b In frequency range 1 kHz to 10 MHz.

^c At nominal supply voltage 1V2 and 2V5.

Implies a voltage headroom for the bias output of minimum 200 mV.

^d Measured with OMA test pattern (Alternating 1's and 0's at 1/8 of the target bit rate of 10 Gb/s).

^e at BER = 1×10^{-12} .

^f Measured with PRBS7 test pattern.

^g Measured with PRBS23 test pattern.

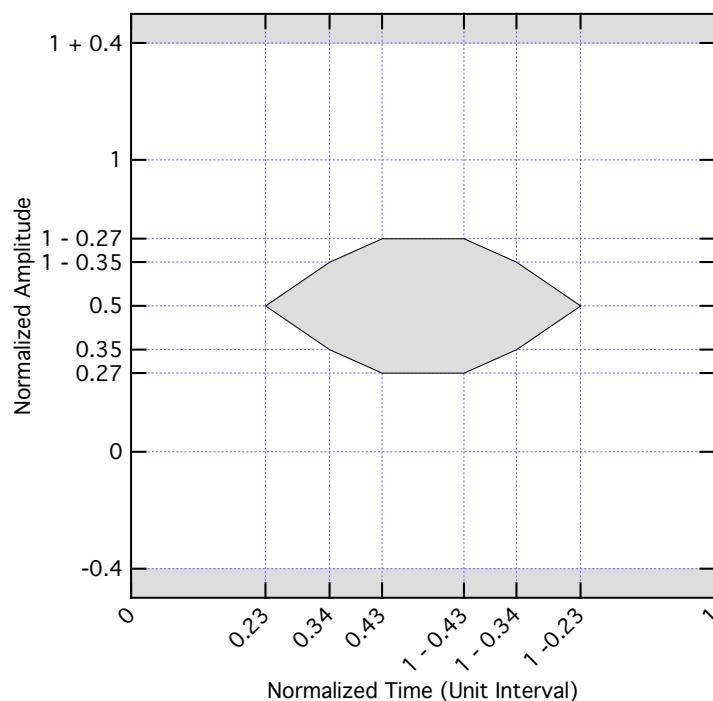


Figure 5: VL+ Quad Laser Driver Output mask.

5 Environmental Specifications

Table 6: VTRx+ module environmental specifications.

#	Specification	Min.	Typ.	Max.	Unit
5.1.1	Total Ionising Dose			1	MGy
5.1.2	Total Neutron Fluence ^a			1×10^{15}	cm ⁻²
5.1.3	Total Hadron Fluence ^a			1×10^{15}	cm ⁻²
5.1.4	SEU cross-section			TBD ^b	cm ²
5.2.1	Operating Temperature ^c	-35		+60	°C
5.3.1	Magnetic Field			4	T

^a The radiation qualification will be carried out in a beam facility providing neutrons with a mean energy of 20 MeV, where both of the above total fluence conditions are simulated by exposure to 3×10^{15} neutrons/cm² (TBC).

^b The figure of merit here would be that the SEU rate should be significantly less than one upset per day in the worst case HL-LHC Tracker radiation environment.

^c Ambient temperature.

6 Configuration

At power-up the quad LDD is configured with default driver settings which allows the device to be fully operational. However, the user can change these settings by programming the chip through its I²C-compatible control interface. The 7-bit slave address of the chip is composed of two fields. The most significant five bits (A6..A2) are hard-wired to 10100, while the least significant two bits (A1 and A0) can be set by the user. Therefore, valid slave addresses range from 0x50 to 0x53. The user-selectable address pins have internal pull-downs, thus the default slave address is 0x50 when the address pins are left unconnected.

6.1 Initial Power-Up

At power-up, all internal memory elements are reset (including the I²C interface logic). The power-up default states of all the registers are set according to Table 7.

The on-chip Power-on-Reset (POR) circuit holds the device in reset until the supply voltage (VDD-1.2V) is high enough to deactivate the POR circuit (i.e., release the device from reset). The reset is kept active by the POR circuit at least for 100 µs. The power on reset time depends on the rise time of the power supply line. If the power supply ramps slowly, the reset time may be longer to ensure proper reset. When the device exits the POR condition (releases reset), the digital part of the device is operational. This is not necessarily true for the analog part.

6.2 Reset behaviour

The $\overline{\text{RST}}$ (RSTN) input has the same impact on the circuit as the internally generated POR signal. An active RSTN signal (low level) voids any I²C transaction and brings all registers to the default values.

6.3 I²C interface

The I²C-bus provides 2-way, 2-line communication between different ICs or modules. It supports *Slave* configuration with the *General Call* address optional feature. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Please note that there are pull-up resistors in the quad LDD pads, however their values are 40 k Ω , which may be too much for systems in which the net capacitance is high. Data transfer may be initiated only when the bus is not busy. During a multibyte access, when the address pointer reaches the end of the register space (0xFF) it wraps around to location 0x00.

Start and stop conditions

Both data (SDA) and clock (SCL) lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the start condition (S). A LOW-to-HIGH transition of the data line, while the clock is HIGH is defined as the stop condition (P) (see Figure 6).

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals (see Figure 7).

Acknowledge

The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit (see Figure 8). The acknowledge bit is a HIGH level put on the bus by the transmitter (master) while generating an extra acknowledge related clock pulse.

A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the

slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set-up and hold times must be taken into account.

A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Write operation

A write to the quad LDD starts with the master issuing the START condition and transmitting the quad LDD slave address with the RW bit set low.

After the quad LDD acknowledges the slave address and write bit, the master transmits a register address, which sets the internal address pointer. The master may then transmit zero or more bytes of data, with the quad LDD acknowledging each byte received. The internal address pointer will increment after each data byte is transferred. The master generates a STOP condition to terminate the data write. An example transaction is depicted on Figure 9. One can use the multi register write operation to configure the whole chip in one I²C transaction.

Read operation

A read from the quad LDD starts with the master issuing the START condition and transmitting the quad LDD slave address with the RW bit set high. The quad LDD acknowledges the slave address. Typically, the master reads one or more bytes from the quad LDD, each byte being acknowledged by the master upon reception with the exception of the last byte. After all registers are read, the master issues a STOP condition. An example transaction is depicted in Figure 10. One can use the multi register read operation to read back the whole chip configuration in one I²C transaction.

After every stop condition, the chip will start a new readout from address 0x00. In order to read from an arbitrary register, a additional write sequence is necessary to load in the data word address. Once the device address word and data word address are clocked in and acknowledged by the quad LDD, the master must generate another start condition. The master now initiates a current address read by sending a device address with the RW select bit high. The quad LDD acknowledges the device address and serially clocks out the data (may be more than one word). Once the master does not want to read more data it does not acknowledge the last word and it generates the STOP condition. An example transaction is depicted in Figure 11.

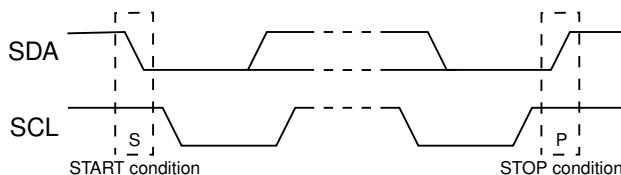


Figure 6: I²C Definition of start and stop conditions.

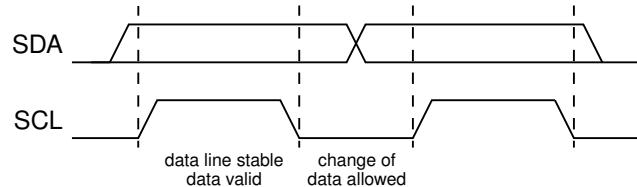
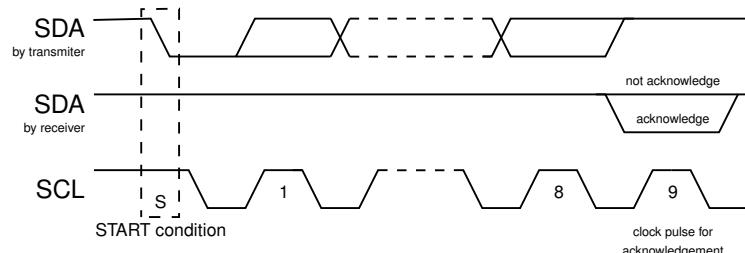
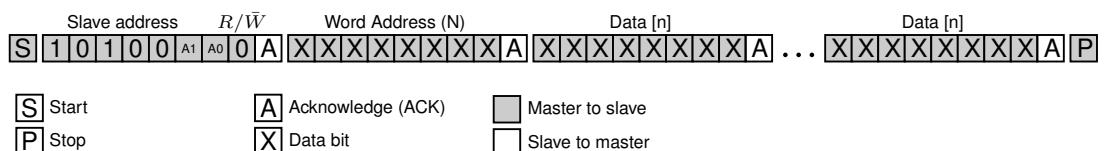
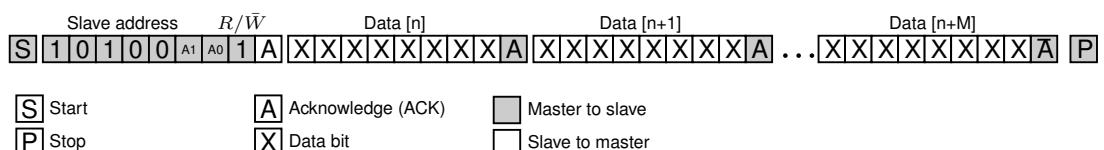
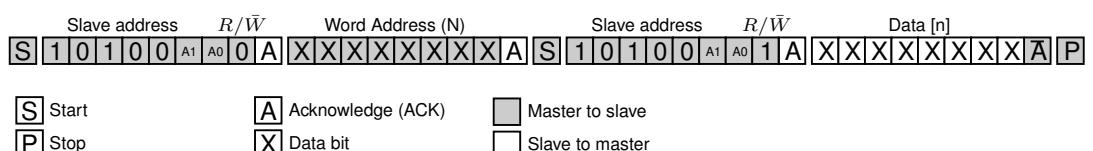





Figure 7: I²C Bit transfer.Figure 8: Acknowledgment on the I²C bus.Figure 9: I²C Data write.Figure 10: I²C Data read from current pointer location.Figure 11: I²C Data read from an arbitrary location.

Table 7: Register map valid for VTRx+ prototypes only (LDQ10 versions 1, 2, and 3).

NAME	ADDR	7	6	5	4	3	2	1	0	DEF.	MODE
GCR	0x00				GOPEN	GMEN	GBEN	GLAEN	GCEN	0x0F	R/W
ODC	0x01								DS	0x01	R/W
-	0x02									0x00	R/W
-	0x03									0x00	R/W
C0CR	0x04			C0FEP	C0REP	C0MEN	C0BEN	C0LAEN	C0CEN	0x0F	R/W
C0BC	0x05								C0BIASCUR [6:0]	0x2F	R/W
C0MC	0x06								C0MODCUR [6:0]	0x26	R/W
C0EA	0x07								C0EMPAMP [2:0]	0x00	R/W
C1CR	0x08			C1FEP	C1REP	C1MEN	C1BEN	C1LAEN	C1CEN	0x0F	R/W
C1BC	0x09								C1BIASCUR [6:0]	0x2F	R/W
C1MC	0x0A								C1MODCUR [6:0]	0x26	R/W
C1EA	0x0B								C1EMPAMP [2:0]	0x00	R/W
C2CR	0x0C			C2FEP	C2REP	C2MEN	C2BEN	C2LAEN	C2CEN	0x0F	R/W
C2BC	0x0D								C2BIASCUR [6:0]	0x2F	R/W
C2MC	0x0E								C2MODCUR [6:0]	0x26	R/W
C2EA	0x0F								C2EMPAMP [2:0]	0x00	R/W
C3CR	0x10			C3FEP	C3REP	C3MEN	C3BEN	C3LAEN	C3CEN	0x0F	R/W
C3BC	0x11								C3BIASCUR [6:0]	0x2F	R/W
C3MC	0x12								C3MODCUR [6:0]	0x26	R/W
C3EA	0x13								C3EMPAMP [2:0]	0x00	R/W
-	0x14									0x00	R/W
-	0x15									0x00	R/W
-	0x16									0x00	R/W
-	0x17									0x00	R/W
-	0x18									0x00	R/W
-	0x19									0x00	R/W
-	0x1A									0x00	R/W
-	0x1B									0x00	R/W
CCNF	0x1C	CSEN					CEC	CEB	CEA	0x00	R/W
PORS	0x1D	0	0	0	0	0	PORC	PORB	PORA	-	R
SEUC	0x1E						SEUCNTR [7:0]			0x00	R/W
CSE	0x1F						CLKSPYENA [7:0]			-	W

6.4 Register Descriptions

Detailed descriptions of register functionalities are given below, where x represents one of the four LDD channels 0, 1, 2, or 3.

Global Control Register (GCR) – Address 0x00

7	6	5	4	3	2	1	0
– r/w	– r/w	– r/w	GPEN r/w	GMEN r/w	GBEN r/w	GLAEN r/w	GCEN r/w
Bit	Name	Default	Description				
0	GCEN	1	Global Chip Enable: This signal is ANDed with the inverted DIS signal coming from the pad. To enable the analog circuits in the device, this bit has to be set to one and DIS signal has to be low (or left floating).				
0	GLAEN	1	Global Limiting Amplifier Enable: Global enable of the limiting amplifier. This bit is masked by the GCEN bit.				
0	GBEN	1	Global Bias Circuit Enable: Global enable of the bias current generator. This bit is masked by the GCEN bit.				
0	GMEN	1	Global Modulation Circuit Enable: Global enable of the modulation current generator. This bit is masked by the GCEN bit.				
0	GPEN	1	Global Pre-emphasis Enable: Global enable of the pre-emphasis circuit. The amplitude of the pre-emphasis is controlled by EMPAMP.				
7:5	–	0x0	unused				

??? Register (ODC) – Address 0x01

7	6	5	4	3	2	1	0
—	—	—	—	—	—	—	DS
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
Bit Name Default Description							
0	DS	1	???				
7:1	—	0x0	unused				

Channel x Control Register (CxCR) – Address 0x04/0x08/0x0C/0x10

7	6	5	4	3	2	1	0
— r/w	— r/w	CxFEP r/w	CxREP r/w	CxMEN r/w	CxBEN r/w	CxLAEN r/w	CxCEN r/w

Bit	Name	Default	Description
0	CxCEN	1	Channel x enable: value of 0 disables channel x. This bit is masked by the GCEN bit in the GCR.
1	CxLAEN	1	Channel x Limiting Amplifier Enable: value of 1 enables the limiting amplifier of channel x. This bit is masked by the GLAEN bit in the GCR.
2	CxBEN	1	Channel x Biasing Circuit Enable: value of 1 enables the bias current generator of channel x. This bit is masked by the GBEN bit in the GCR.
3	CxMEN	1	Channel x Modulation Circuit Enable: value of 1 enables the modulation current of channel x. This bit is masked by the GMEN bit in the GCR.
4	CxREP	0	Channel x Rising Edge Pre-emphasis: value of 1 enables rising edge pre-emphasis on channel x. This bit is masked by the GPEN bit in the GCR.
5	CxFEP	0	Channel x Falling Edge Pre-emphasis: value of 1 enables falling edge pre-emphasis on channel x. This bit is masked by the GPEN bit in the GCR.
7:6	—	0x0	unused

Channel x Bias Current Register (CxBC) – Address 0x05/0x09/0x0D/0x11

7	6	5	4	3	2	1	0
—	CxBiasCur[6:0]						
r/w							
Bit	Name	Default	Description				
6:0	CxBiasCur	0x2f	Biasing current step size is given in specification # 4.3.2. The bias generator is enabled by setting the CxBEN bit in the CxCR register (as well as corresponding bits in GCR)				
7	—	0	unused				

Channel x Modulation Current Register (CxMC) – Address 0x06/0x0A/0x0E/0x12

7	6	5	4	3	2	1	0
—	CxModCur[6:0]						
r/w							
Bit	Name	Default	Description				
6:0	CxModCur	0x26	Modulation current step size is given in specification # 4.4.6. The modulation current generator is enabled by setting the CxMEN bit in the CxCR register (as well as corresponding bits in GCR)				
7	—	0	unused				

Channel x Emphasis Amplitude Register (CxEA) – Address 0x07/0x0B/0x0F/0x13

7	6	5	4	3	2	1	0
—	—	—	—	—	CxEmpAmp[2:0]		
r/w	r/w	r/w	r/w	r/w			
Bit	Name	Default	Description				
2:0	CxEmpAmp	0	Pre-emphasis amplitude. To enable pre-emphasis at least one of FEP or REP in CNCR register must be set (as well as GPE bit in GCR)				
7:3	—	0	unused				

Clock configuration register (CCNF) – Address 0x1C

7	6	5	4	3	2	1	0
CSEN	–	–	–	–	CEC	CEB	CEA
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
Bit Name Default Description							
0	CEA	1	Clock enable for clock A				
1	CEB	1	Clock enable for clock B				
2	CEC	1	Clock enable for clock C				
6:3	–	0	unused				
7	CSEN	0	Clock spying enable. Setting this bit to one does not trigger clock spying for current transaction. To start clock spying one has to write to register CSE				

The CCNF affects the clock generation used for register immunity to Single Event Effects. It is intended to be used only during initial testing and its value should therefore not be changed during normal operation. For more details please refer to section 7.1.

!Warning! Please note that disabling more than one clock will cause the chip to stop responding. To recover the chip a power cycle or sending RSTN signal is necessary.

Power-on reset status register (PORS) – Address 0x1D

7	6	5	4	3	2	1	0
–	–	–	–	–	PORC	PORB	PORA
r	r	r	r	r	r	r	r
Bit Name Default Description							
0	PORA	n/a	Power on reset A				
1	PORB	n/a	Power on reset B				
2	PORC	n/a	Power on reset C				
7:3	–	0	unused				

Single Event Upset counter register (SEUC) – Address 0x1E

7	6	5	4	3	2	1	0
SEUCntr[7:0]							
Bit Name Default Description							
7:0	SEUCntr	0	Counter containing the integrated number of SEU events. Writing to the counter resets it to zero.				

Clock Spying enable register (CSE) – Address 0x1F

7	6	5	4	3	2	1	0
ClkSpyEna[7:0]							
Bit Name Default Description							
7:0	ClkSpyEna	0	Writing to this register can trigger clock spying event (see section 7.1).				

7 Tolerance to single event upsets

For correct laser driver operation, it is important that the behaviour of the chip (the contents of the configuration registers in particular) will not be upset by any single event effect. To avoid malfunction, the digital block uses Triple Modular Redundancy (TMR).

7.1 Clock generator

It was decided to embed a clock generator in order to make the digital block more robust against glitches and Single Event Upsets (SEU). There is no strong requirement for the operating frequency. The clock should be faster than 400 kHz to ensure proper decoding of I²C transactions in full speed mode. On the other hand, the clock should not be too fast in order to keep the power consumption low. A frequency around several MHz seems to be a reasonable value. Moreover, the clock generator should be SEU tolerant.

When voting synchronous signals, data are latched according to a clock edge and can be unambiguously voted either before or after the clock edge. When voting asynchronous signals (such as a clock) it is possible to have two correct signals and still get an incorrect result (for example a signal of a given frequency). If the triplicated signals are not perfectly in phase, a Single Event Transient (SET) on one of them is able to influence the vote producing anomalous result for the resulting signal, which is of incorrect frequency and has some transitions that are much too fast. These extra transitions are likely to violate timing constraints of the circuit (flip flops).

An architecture, shown in Figure 12, based on triplicated ring oscillator is proposed. In order to minimize the impact of SET, the clock generator is designed in a way, that the redundant units operate closely in phase and voting is performed along the delay line to reduce life time of SET induced errors.

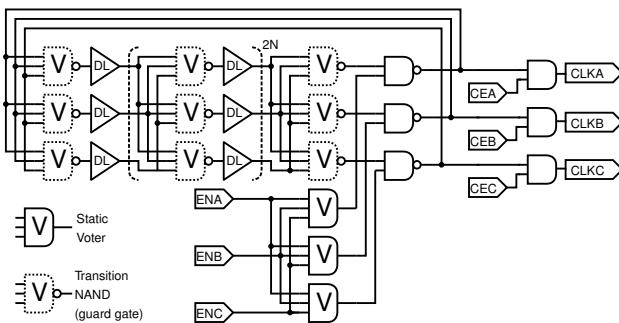


Figure 12: Schematic diagram of the triplicated clock generator.

The circuit is composed of delay lines, voting circuits and NAND gates. Transition nAnd Gates (TAG) are used as a voting elements. During normal operation, when signals A,B, and C are equal, TAG gate acts as an inverter. In case of SET or phase mismatch between A,B, or C, the output of TAG gate will float and it will maintain its value (for a time duration determined by the leakage current and the capacitance of the output node). It is assumed, that the voltage degradation due to leakage current for the time duration of SET pulse (which should be in ns range) is negligible. When all inputs of TAG become identical again, the gate will function as before, thereby eliminating the error pulse from the system. At this point, one more important property of TAG gate should be stressed out. In the case of clock signal voting, any SET can only prolong clock period (which is not dangerous for sequential circuits) and not make it shorter. TAG effectively filters out all glitches which can be interpreted as a short clock pulses.

TriPLICATION testing

In the selected architecture all clocks are always generated. In order to detect fabrication issues which may be masked by the TMR, a clock masking mechanism was added at the output of the block. One can disable one of the clocks, using register CCNF, and check if the circuit performs as expected.

Frequency of the oscillator

The basic delay element DEL4 is taken from the process library. The delay of DEL4 cell is 2.5 ns (BC: 1.8 ns, WC: 4.2 ns). Utilizing 32 delay elements per ring oscillator one may expect frequency of 6.25 MHz (BC: 8.6 MHz, WC: 3.7 MHz).

As the clock signal is not accessible outside the chip a mechanism was foreseen to observe the clock on one of the available ports. The SDA port from I²C bus was chosen, as it will be connected to a master in all systems (this connection can lead to an additional monitoring features). As the SDA line may be loaded with significant capacitance, outputting a clock would not work in all cases. To mitigate that problem, clock frequency is divided by a factor of 128, which should ensure that clock frequency stays below 100 kHz.

The clock spying has to be enabled by setting bit CSEN in register CCNF. To trigger the clock spying event one has to write value 0xA5 to register CSE. After the acknowledge bit is received, the master should release SDA line while keeping SCL line low (see Figure 13). The quad LDD will output the divided clock on the SDA line. To stop the clock spying master should pull the SCL line up and wait until the STOP condition is generated by the next rising edge on the SDA line.

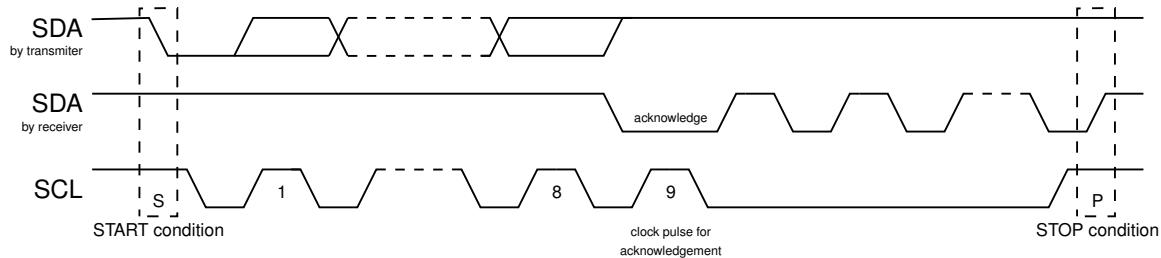


Figure 13: Clock spying on the I²C bus.

Measurement of the oscillator frequency can be used during wafer testing to monitor process variations. In the final setup it can also be used to monitor temperature of the chip (assuming that the power supply voltage is constant) as the frequency of a ring oscillator is temperature dependent. The expected ring oscillator frequency as a function of temperature for three process corners is shown in Figure 14. The slope is around $-20\text{ kHz}/^{\circ}\text{C}$.

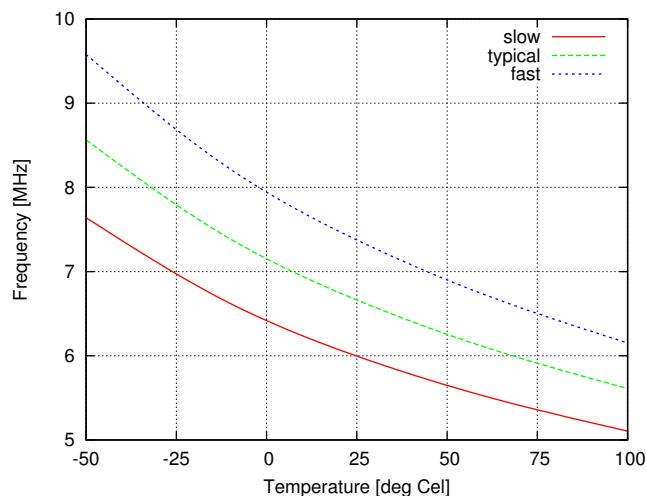


Figure 14: Ring oscillator frequency as a function of temperature for three process corners.

7.2 System reset generator

An architecture of the system reset generator is shown in Figure 15.

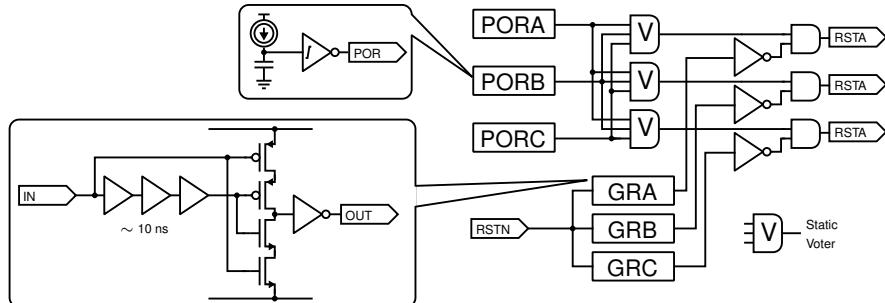


Figure 15: Schematic diagram of the system reset generator.